دورية أكاديمية

Marine and terrestrial nitrifying bacteria are sources of diverse bacteriohopanepolyols.

التفاصيل البيبلوغرافية
العنوان: Marine and terrestrial nitrifying bacteria are sources of diverse bacteriohopanepolyols.
المؤلفون: Elling FJ; Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA., Evans TW; Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA., Nathan V; Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA., Hemingway JD; Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA., Kharbush JJ; Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA.; Department of Earth and Environmental Science, University of Michigan, Ann Arbor, Michigan, USA., Bayer B; Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA., Spieck E; Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany., Husain F; Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA., Summons RE; Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA., Pearson A; Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA.
المصدر: Geobiology [Geobiology] 2022 May; Vol. 20 (3), pp. 399-420. Date of Electronic Publication: 2022 Jan 21.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 101185472 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1472-4669 (Electronic) Linking ISSN: 14724669 NLM ISO Abbreviation: Geobiology Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Wiley, 2003-
مواضيع طبية MeSH: Ammonia*/metabolism , Nitrites*/metabolism, Bacteria/metabolism ; Carbon/metabolism ; Nitrification ; Oxidation-Reduction ; Phylogeny
مستخلص: Hopanoid lipids, bacteriohopanols and bacteriohopanepolyols, are membrane components exclusive to bacteria. Together with their diagenetic derivatives, they are commonly used as biomarkers for specific bacterial groups or biogeochemical processes in the geologic record. However, the sources of hopanoids to marine and freshwater environments remain inadequately constrained. Recent marker gene studies suggest a widespread potential for hopanoid biosynthesis in marine bacterioplankton, including nitrifying (i.e., ammonia- and nitrite-oxidizing) bacteria. To explore their hopanoid biosynthetic capacities, we studied the distribution of hopanoid biosynthetic genes in the genomes of cultivated and uncultivated ammonia-oxidizing (AOB), nitrite-oxidizing (NOB), and complete ammonia-oxidizing (comammox) bacteria, finding that biosynthesis of diverse hopanoids is common among seven of the nine presently cultivated clades of nitrifying bacteria. Hopanoid biosynthesis genes are also conserved among the diverse lineages of bacterial nitrifiers detected in environmental metagenomes. We selected seven representative NOB isolated from marine, freshwater, and engineered environments for phenotypic characterization. All tested NOB produced diverse types of hopanoids, with some NOB producing primarily diploptene and others producing primarily bacteriohopanepolyols. Relative and absolute abundances of hopanoids were distinct among the cultures and dependent on growth conditions, such as oxygen and nitrite limitation. Several novel nitrogen-containing bacteriohopanepolyols were tentatively identified, of which the so called BHP-743.6 was present in all NOB. Distinct carbon isotopic signatures of biomass, hopanoids, and fatty acids in four tested NOB suggest operation of the reverse tricarboxylic acid cycle in Nitrospira spp. and Nitrospina gracilis and of the Calvin-Benson-Bassham cycle for carbon fixation in Nitrobacter vulgaris and Nitrococcus mobilis. We suggest that the contribution of hopanoids by NOB to environmental samples could be estimated by their carbon isotopic compositions. The ubiquity of nitrifying bacteria in the ocean today and the antiquity of this metabolic process suggest the potential for significant contributions to the geologic record of hopanoids.
(© 2022 John Wiley & Sons Ltd.)
References: Alawi, M., Lipski, A., Sanders, T., Pfeiffer, E. M., & Spieck, E. (2007). Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic. The ISME Journal, 1, 256-264. https://doi.org/10.1038/ismej.2007.34.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2.
Bayer, B., Saito, M. A., McIlvin, M. R., Lücker, S., Moran, D. M., Lankiewicz, T. S., Dupont, C. L., & Santoro, A. E. (2021). Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions. The ISME Journal, 15, 1025-1039. https://doi.org/10.1038/s41396-020-00828-3.
Belin, B. J., Busset, N., Giraud, E., Molinaro, A., Silipo, A., & Newman, D. K. (2018). Hopanoid lipids: From membranes to plant-bacteria interactions. Nature Reviews Microbiology, 16, 304-315. https://doi.org/10.1038/nrmicro.2017.173.
Berg, I. A., Kockelkorn, D., Ramos-Vera, W. H., Say, R. F., Zarzycki, J., Hügler, M., Alber, B. E., & Fuchs, G. (2010). Autotrophic carbon fixation in archaea. Nature Reviews Microbiology, 8, 447-460. https://doi.org/10.1038/nrmicro2365.
Berndmeyer, C., Thiel, V., Schmale, O., & Blumenberg, M. (2013). Biomarkers for aerobic methanotrophy in the water column of the stratified Gotland Deep (Baltic Sea). Organic Geochemistry, 55, 103-111. https://doi.org/10.1016/j.orggeochem.2012.11.010.
Berry, A. M., Harriott, O. T., Moreau, R. A., Osman, S. F., Benson, D. R., & Jones, A. D. (1993). Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proceedings of the National Academy of Sciences of the United States of America, 90, 6091-6094. https://doi.org/10.1073/pnas.90.13.6091.
Birgel, D., Peckmann, J., Klautzsch, S., Thiel, V., & Reitner, J. (2006). Anaerobic and aerobic oxidation of methane at late cretaceous seeps in the Western Interior Seaway, USA. Geomicrobiology Journal, 23, 565-577. https://doi.org/10.1080/01490450600897369.
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Biochemistry and Cell Biology, 37, 911-917.
Blumenberg, M., Berndmeyer, C., Moros, M., Muschalla, M., Schmale, O., & Thiel, V. (2013). Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea. Biogeosciences, 10, 2725-2735. https://doi.org/10.5194/bg-10-2725-2013.
Bock, E., Sundermeyer-Klinger, H., & Stackebrandt, E. (1983). New facultative lithoautotrophic nitrite-oxidizing bacteria. Archives of Microbiology, 136, 281-284. https://doi.org/10.1007/BF00425217.
Boddicker, A. M., & Mosier, A. C. (2018). Genomic profiling of four cultivated Candidatus Nitrotoga spp. predicts broad metabolic potential and environmental distribution. The ISME Journal, 12, 2864-2882. https://doi.org/10.1038/s41396-018-0240-8.
Bodlenner, A., Liu, W., Hirsch, G., Schaeffer, P., Blumenberg, M., Lendt, R., Tritsch, D., Michaelis, W., & Rohmer, M. (2015). C35 hopanoid side chain biosynthesis: Reduction of ribosylhopane into bacteriohopanetetrol by a cell-free system derived from Methylobacterium organophilum. ChemBioChem, 16, 1764-1770.
Boenigk, J., Stadler, P., Wiedlroither, A., & Hahn, M. W. (2004). Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster. Applied and Environmental Microbiology, 70, 5787-5793.
Bradley, A. S., Pearson, A., Sáenz, J. P., & Marx, C. J. (2010). Adenosylhopane: The first intermediate in hopanoid side chain biosynthesis. Organic Geochemistry, 41, 1075-1081. https://doi.org/10.1016/j.orggeochem.2010.07.003.
Bradley, A. S., Swanson, P. K., Muller, E. E. L., Bringel, F., Caroll, S. M., Pearson, A., Vuilleumier, S., & Marx, C. J. (2017). Hopanoid-free Methylobacterium extorquens DM4 overproduces carotenoids and has widespread growth impairment. PLoS One, 12, e0173323. https://doi.org/10.1371/journal.pone.0173323.
Briggs, D. E. G., & Summons, R. E. (2014). Ancient biomolecules: Their origins, fossilization, and role in revealing the history of life. BioEssays, 36, 482-490. https://doi.org/10.1002/bies.201400010.
Brocks, J. J., & Banfield, J. (2009). Unravelling ancient microbial history with community proteogenomics and lipid geochemistry. Nature Reviews. Microbiology, 7, 601-609.
Brocks, J. J., & Pearson, A. (2005). Building the biomarker tree of life. Reviews in Mineralogy and Geochemistry, 59, 233-258. https://doi.org/10.2138/rmg.2005.59.10.
Cao, C., Love, G. D., Hays, L. E., Wang, W., Shen, S., & Summons, R. E. (2009). Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth and Planetary Science Letters, 281, 188-201. https://doi.org/10.1016/j.epsl.2009.02.012.
Caron, B., Mark, A. E., & Poger, D. (2014). Some like it hot: The effect of sterols and hopanoids on lipid ordering at high temperature. The Journal of Physical Chemistry Letters, 5, 3953-3957. https://doi.org/10.1021/jz5020778.
Close, H. G., Shah, S. R., Ingalls, A. E., Diefendorf, A. F., Brodie, E. L., Hansman, R. L., Freeman, K. H., Aluwihare, L. I., & Pearson, A. (2013). Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyre. Proceedings of the National Academy of Sciences of the United States of America, 110, 12565-12570. https://doi.org/10.1073/pnas.1217514110.
Collister, J. W., Summons, R. E., Lichtfouse, E., & Hayes, J. M. (1992). An isotopic biogeochemical study of the Green River oil shale. Organic Geochemistry, 19, 265-276. https://doi.org/10.1016/0146-6380(92)90042-V.
Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R. H., Von, B. M., Rattei, T., Bendinger, B., Nielsen, P. H., & Wagner, M. (2015). Complete nitrification by Nitrospira bacteria. Nature, 528, 504-509. https://doi.org/10.1038/nature16461.
Daims, H., Lücker, S., & Wagner, M. (2016). A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in Microbiology, 24, 699-712. https://doi.org/10.1016/j.tim.2016.05.004.
Doughty, D. M., Hunter, R. C., Summons, R. E., & Newman, D. K. (2009). 2-Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme: Geobiological implications. Geobiology, 7, 524-532.
Doxey, A. C., Kurtz, D. A., Lynch, M. D., Sauder, L. A., & Neufeld, J. D. (2015). Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. The ISME Journal, 9, 461-471. https://doi.org/10.1038/ismej.2014.142.
Elling, F. J., Hemingway, J. D., Evans, T. W., Kharbush, J. J., Spieck, E., Summons, R. E., & Pearson, A. (2020). Vitamin B12-dependent biosynthesis ties amplified 2-methylhopanoid production during oceanic anoxic events to nitrification. Proceedings of the National Academy of Sciences of the United States of America, 117, 32996-33004.
Elling, F. J., Hemingway, J. D., Kharbush, J. J., Becker, K. W., Polik, C. A., & Pearson, A. (2021). Linking diatom-diazotroph symbioses to nitrogen cycle perturbations and deep-water anoxia: Insights from Mediterranean sapropel events. Earth and Planetary Science Letters, 571, 117110. https://doi.org/10.1016/j.epsl.2021.117110.
Erb, T. J. (2011). Carboxylases in natural and synthetic microbial pathways. Applied and Environmental Microbiology, 77, 8466-8477. https://doi.org/10.1128/AEM.05702-11.
Falkowski, P. G., Barber, R. T., & Smetacek, V. (1998). Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200-206. https://doi.org/10.1126/science.281.5374.200.
Fischer, W. W., Summons, R. E., & Pearson, A. (2005). Targeted genomic detection of biosynthetic pathways: Anaerobic production of hopanoid biomarkers by a common sedimentary microbe. Geobiology, 3, 33-40. https://doi.org/10.1111/j.1472-4669.2005.00041.x.
Füssel, J., Lücker, S., Yilmaz, P., Nowka, B., van Kessel, M. A. H. J., Bourceau, P., Hach, P. F., Littmann, S., Berg, J., Spieck, E., Daims, H., Kuypers, M. M. M., & Lam, P. (2017). Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus. Science Advances, 3, e1700807.
Hayatsu, M., Tago, K., Uchiyama, I., Toyoda, A., Wang, Y., Shimomura, Y., Okubo, T., Kurisu, F., Hirono, Y., Nonaka, K., Akiyama, H., Itoh, T., & Takami, H. (2017). An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. The ISME Journal, 11, 1130-1141. https://doi.org/10.1038/ismej.2016.191.
Heal, K. R., Qin, W., Ribalet, F., Bertagnolli, A. D., Coyote-Maestas, W., Hmelo, L. R., Moffett, J. W., Devol, A. H., Armbrust, E. V., Stahl, D. A., & Ingalls, A. E. (2017). Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 114, 364-369.
Ichihara, K., & Fukubayashi, Y. (2010). Preparation of fatty acid methyl esters for gas-liquid chromatography. Journal of Lipid Research, 51, 635-640. https://doi.org/10.1194/jlr.D001065.
Ishii, K., Fujitani, H., Sekiguchi, Y., & Tsuneda, S. (2020). Physiological and genomic characterization of a new ‘Candidatus Nitrotoga’ isolate. Environmental Microbiology, 22, 2365-2382.
Kasprak, A. H., Sepúlveda, J., Price-Waldman, R., Williford, K. H., Schoepfer, S. D., Haggart, J. W., Ward, P. D., Summons, R. E., & Whiteside, J. H. (2015). Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction. Geology, 43, 307-310. https://doi.org/10.1130/G36371.1.
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780. https://doi.org/10.1093/molbev/mst010.
Kharbush, J. J., Kejriwal, K., & Aluwihare, L. I. (2015). Distribution and abundance of hopanoid producers in low-oxygen environments of the Eastern Pacific Ocean. Microbial Ecology, 401-408.
Kharbush, J. J., Thompson, L. R., Haroon, M. F., Knight, R., & Aluwihare, L. I. (2018). Hopanoid-producing bacteria in the Red Sea include the major marine nitrite oxidizers. FEMS Microbiology Ecology, 94, fiy063. https://doi.org/10.1093/femsec/fiy063.
Kharbush, J. J., Ugalde, J. A., Hogle, S. L., Allen, E. E., & Aluwihare, L. I. (2013). Composite bacterial hopanoids and their microbial producers across oxygen gradients in the water column of the California current. Applied and Environmental Microbiology, 79, 7491-7501. https://doi.org/10.1128/AEM.02367-13.
Kitzinger, K., Koch, H., Lücker, S., Sedlacek, C. J., Herbold, C., Schwarz, J., Daebeler, A., Mueller, A. J., Lukumbuzya, M., Romano, S., Leisch, N., Karst, S. M., Kirkegaard, R., Albertsen, M., Nielsen, P. H., Wagner, M., & Daims, H. (2018). Characterization of the first “Candidatus Nitrotoga” isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria. MBio 9, e01186-18.
Koops, H.-P., & Pommerening-Röser, A. (2015). The lithoautotrophic ammonia-oxidizing bacteria. In W. B. Whitman (Ed.), Bergey’s manual of systematics of archaea and bacteria (pp. 1-17). Jonh Wiley & Sons Inc.
Koops, H.-P., Purkhold, U., Pommerening-Röser, A., Timmermann, G., & Wagner, M. (2006). The lithoautotrophic ammonia-oxidizing bacteria. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes (pp. 778-811). Springer New York.
Kuypers, M. M. M., Blokker, P., Erbacher, J., Kinkel, H., Pancost, R. D., Schouten, S., & Sinninghe Damsté, J. S. (2001). Massive expansion of marine archaea during a mid-cretaceous oceanic anoxic event. Science, 293, 92-95. https://doi.org/10.1126/science.1058424.
Kuypers, M. M. M., Blokker, P., Hopmans, E. C., Kinkel, H., Pancost, R. D., Schouten, S., & Sinninghe Damsté, J. S. (2002). Archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1b. Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 211-234. https://doi.org/10.1016/S0031-0182(02)00301-2.
Kuypers, M. M. M., van Breugel, Y., Schouten, S., Erba, E., & Sinninghe Damsté, J. S. (2004). N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology, 32, 853. https://doi.org/10.1130/G20458.1.
Lengger, S. K., Rush, D., Mayser, J. P., Blewett, J., Schwartz-Narbonne, R., Talbot, H. M., Middelburg, J. J., Jetten, M. S. M., Schouten, S., Damsté, J. S. S., & Pancost, R. D. (2019). Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM). Global Biogeochemical Cycles, 33, 1715-1732. https://doi.org/10.1029/2019GB006282.
Letunic, I., & Bork, P. (2016). Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 44, W242-W245. https://doi.org/10.1093/nar/gkw290.
Liu, W., Sakr, E., Schaeffer, P., Talbot, H. M., Donisi, J., Härtner, T., Kannenberg, E., Takano, E., & Rohmer, M. (2014). Ribosylhopane, a novel bacterial hopanoid, as precursor of C35 bacteriohopanepolyols in Streptomyces coelicolor A3(2). ChemBioChem, 15, 2156-2161.
Lücker, S., Nowka, B., Rattei, T., Spieck, E., & Daims, H. (2013). The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Frontiers in Microbiology, 4, 27.
Lücker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., Vacherie, B., Rattei, T., Damsté, J. S. S., Spieck, E., Le Paslier, D., & Daims, H. (2010). A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proceedings of the National Academy of Sciences of the United States of America, 107, 13479-13484. https://doi.org/10.1073/pnas.1003860107.
Lunau, M., Lemke, A., Walther, K., Martens-Habbena, W., & Simon, M. (2005). An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environmental Microbiology, 7, 961-968. https://doi.org/10.1111/j.1462-2920.2005.00767.x.
Mangiarotti, A., Genovese, D. M., Naumann, C. A., Monti, M. R., & Wilke, N. (2019). Hopanoids, like sterols, modulate dynamics, compaction, phase segregation and permeability of membranes. Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1861, 183060.
Matys, E. D., Sepúlveda, J., Pantoja, S., Lange, C. B., Caniupán, M., Lamy, F., & Summons, R. E. (2017). Bacteriohopanepolyols along redox gradients in the Humboldt Current System off northern Chile. Geobiology, 15, 844-857. https://doi.org/10.1111/gbi.12250.
McNevin, D. B., Badger, M. R., Whitney, S. M., von Caemmerer, S., Tcherkez, G. G. B., & Farquhar, G. D. (2007). Differences in carbon isotope discrimination of three variants of D-ribulose-1,5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms. Journal of Biological Chemistry, 282, 36068-36076. https://doi.org/10.1074/jbc.M706274200.
Menzel, D., Hopmans, E. C., Schouten, S., & Sinninghe Damsté, J. S. (2006). Membrane tetraether lipids of planktonic Crenarchaeota in Pliocene sapropels of the eastern Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 1-15. https://doi.org/10.1016/j.palaeo.2006.01.002.
Mincer, T. J., Church, M. J., Taylor, L. T., Preston, C., Karl, D. M., & DeLong, E. F. (2007). Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environmental Microbiology, 9, 1162-1175. https://doi.org/10.1111/j.1462-2920.2007.01239.x.
Mook W. G., Bommerson J. C., & Staverman W. H. (1974). Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters, 22, 169-176. http://dx.doi.org/10.1016/0012-821x(74)90078-8.
Mueller, A. J., Jung, M.-Y., Strachan, C. R., Herbold, C. W., Kirkegaard, R. H., Wagner, M., & Daims, H. (2020). Genomic and kinetic analysis of novel Nitrospinae enriched by cell sorting. The ISME Journal, 15, 732-745.
Naafs, B. D. A., Monteiro, F. M., Pearson, A., Higgins, M. B., Pancost, R. D., & Ridgwell, A. (2019). Fundamentally different global marine nitrogen cycling in response to severe ocean deoxygenation. Proceedings of the National Academy of Sciences of the United States of America, 116, 24979-24984. https://doi.org/10.1073/pnas.1905553116.
Newman, D. K., Neubauer, C., Ricci, J. N., Wu, C.-H., & Pearson, A. (2016). Cellular and molecular biological approaches to interpreting ancient biomarkers. Annual Review of Earth and Planetary Sciences, 44, 493-522. https://doi.org/10.1146/annurev-earth-050212-123958.
Ourisson, G., & Albrecht, P. (1992). Hopanoids. 1. Geohopanoids: The most abundant natural products on Earth? Accounts of Chemical Research, 25, 398-402.
Ourisson, G., & Rohmer, M. (1992). Hopanoids. 2. Biohopanoids: A novel class of bacterial lipids. Accounts of Chemical Research, 25, 403-408. https://doi.org/10.1021/ar00021a004.
Ourisson, G., Rohmer, M., & Poralla, K. (1987). Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annual Review of Microbiology, 41, 301-333. https://doi.org/10.1146/annurev.mi.41.100187.001505.
Pachiadaki, M. G., Sintes, E., Bergauer, K., Brown, J. M., Record, N. R., Swan, B. K., Mathyer, M. E., Hallam, S. J., Lopez-Garcia, P., Takaki, Y., Nunoura, T., Woyke, T., Herndl, G. J., & Stepanauskas, R. (2017). Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science, 358, 1046-1051. https://doi.org/10.1126/science.aan8260.
Palomo, A., Pedersen, A. G., Fowler, S. J., Dechesne, A., Sicheritz-Pontén, T., & Smets, B. F. (2018). Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. The ISME Journal, 12, 1779. https://doi.org/10.1038/s41396-018-0083-3.
Pearson, A., Flood Page, S. R., Jorgenson, T. L., Fischer, W. W., & Higgins, M. B. (2007). Novel hopanoid cyclases from the environment. Environmental Microbiology, 9, 2175-2188. https://doi.org/10.1111/j.1462-2920.2007.01331.x.
Picone, N., Pol, A., Mesman, R., van Kessel, M. A. H. J., Cremers, G., van Gelder, A. H., van Alen, T. A., Jetten, M. S. M., Lücker, S., & Op den Camp, H. J. M. (2020). Ammonia oxidation at pH 2.5 by a new gammaproteobacterial ammonia-oxidizing bacterium. The ISME Journal, 15, 1150-1164.
Poger, D., & Mark, A. E. (2013). The relative effect of sterols and hopanoids on lipid bilayers: When comparable is not identical. The Journal of Physical Chemistry B, 117, 16129-16140. https://doi.org/10.1021/jp409748d.
Polik, C. A., Elling, F. J., & Pearson, A. (2018). Impacts of paleoecology on the TEX86 sea surface temperature proxy in the pliocene-pleistocene Mediterranean Sea. Paleoceanography and Paleoclimatology, 33, 1472-1489.
Preuß, A., Schauder, R., Fuchs, G., & Stichler, W. (1989). Carbon isotope fractionation by autotrophic bacteria with three different CO2 fixation pathways. Zeitschrift für Naturforschung, 44, 397-402.
Quandt, L., Gottschalk, G., Ziegler, H., & Stichler, W. (1977). Isotope discrimination by photosynthetic bacteria. FEMS Microbiology Letters, 1, 125-128. https://doi.org/10.1111/j.1574-6968.1977.tb00596.x.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596.
Rashby, S. E., Sessions, A. L., Summons, R. E., & Newman, D. K. (2007). Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proceedings of the National Academy of Sciences of the United States of America, 104, 15099-15104. https://doi.org/10.1073/pnas.0704912104.
Ricci, J. N., Coleman, M. L., Welander, P. V., Sessions, A. L., Summons, R. E., Spear, J. R., & Newman, D. K. (2013). Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. The ISME Journal, 8, 1-10.
Ricci, J. N., Coleman, M. L., Welander, P. V., Sessions, A. L., Summons, R. E., Spear, J. R., & Newman, D. K. (2014). Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. The ISME Journal, 8, 675-684. https://doi.org/10.1038/ismej.2013.191.
Ricci, J. N., Michel, A. J., & Newman, D. K. (2015). Phylogenetic analysis of HpnP reveals the origin of 2-methylhopanoid production in Alphaproteobacteria. Geobiology, 13, 267-277. https://doi.org/10.1111/gbi.12129.
Richardson, T. L., & Jackson, G. A. (2007). Small phytoplankton and carbon export from the surface ocean. Science, 315, 838-840. https://doi.org/10.1126/science.1133471.
Rohmer, M., Bouvier-Nave, P., & Ourisson, G. (1984). Distribution of hopanoid triterpenes in prokaryotes. Microbiology, 130, 1137-1150. https://doi.org/10.1099/00221287-130-5-1137.
Rush, D., Osborne, K. A., Birgel, D., Kappler, A., Hirayama, H., Peckmann, J., Poulton, S. W., Nickel, J. C., Mangelsdorf, K., Kalyuzhnaya, M., Sidgwick, F. R., & Talbot, H. M. (2016). The bacteriohopanepolyol inventory of novel aerobic methane oxidising bacteria reveals new biomarker signatures of aerobic methanotrophy in marine systems. PLoS One, 11, 1-27. https://doi.org/10.1371/journal.pone.0165635.
Sáenz, J. P. (2010). Exploring the distribution and physiological roles of bacterial membrane lipids in the marine environment (PhD Thesis).
Sáenz, J. P., Sezgin, E., Schwille, P., & Simons, K. (2012). Functional convergence of hopanoids and sterols in membrane ordering. Proceedings of the National Academy of Sciences of the United States of America, 109, 14236-14240. https://doi.org/10.1073/pnas.1212141109.
Sáenz, J. P., Wakeham, S. G., Eglinton, T. I., & Summons, R. E. (2011). New constraints on the provenance of hopanoids in the marine geologic record: Bacteriohopanepolyols in marine suboxic and anoxic environments. Organic Geochemistry, 42, 1351-1362. https://doi.org/10.1016/j.orggeochem.2011.08.016.
Sakata, S., Hayes, J. M., Rohmer, M., Hooper, A. B., & Seemann, M. (2008). Stable carbon-isotopic compositions of lipids isolated from the ammonia-oxidizing chemoautotroph Nitrosomonas europaea. Organic Geochemistry, Stable Isotopes in Biogeosciences (II), 39, 1725-1734. https://doi.org/10.1016/j.orggeochem.2008.08.005.
Santoro, A. E., Casciotti, K. L., & Francis, C. A. (2010). Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environmental Microbiology, 12, 1989-2006. https://doi.org/10.1111/j.1462-2920.2010.02205.x.
Sato, S., Kudo, F., Rohmer, M., & Eguchi, T. (2020). Characterization of radical SAM adenosylhopane synthase, HpnH, which catalyzes the 5′-deoxyadenosyl radical addition to diploptene in the biosynthesis of C35 bacteriohopanepolyols. Angewandte Chemie International Edition, 59, 237-241.
Schmerk, C. L., Welander, P. V., Hamad, M. A., Bain, K. L., Bernards, M. A., Summons, R. E., & Valvano, M. A. (2015). Elucidation of the Burkholderia cenocepacia hopanoid biosynthesis pathway uncovers functions for conserved proteins in hopanoid-producing bacteria. Environmental Microbiology, 17, 735-750.
Schopfer, F. J., & Khoo, N. K. H. (2019). Nitro-fatty acid logistics: Formation, biodistribution, signaling, and pharmacology. Trends in Endocrinology & Metabolism, 30, 505-519. https://doi.org/10.1016/j.tem.2019.04.009.
Seemann, M., Bisseret, P., Tritz, J.-P., Hooper, A. B., & Rohmer, M. (1999). Novel bacterial triterpenoids of the hopane series from Nitrosomonas europaea and their significance for the formation of the C35 bacteriohopane skeleton. Tetrahedron Letters, 40, 1681-1684. https://doi.org/10.1016/S0040-4039(99)00064-7.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Dedysh, S. N., Foesel, B. U., & Villanueva, L. (2017). Pheno- and genotyping of hopanoid production in Acidobacteria. Frontiers in Microbiology, 8, 968.
Sirevåg, R., Buchanan, B. B., Berry, J. A., & Troughton, J. H. (1977). Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Archives of Microbiology, 112, 35-38.
Sohlenkamp, C., & Geiger, O. (2016). Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiology Reviews, 40, 133-159. https://doi.org/10.1093/femsre/fuv008.
Sorokin, D. Y., Lücker, S., Vejmelkova, D., Kostrikina, N. A., Kleerebezem, R., Rijpstra, W. I. C., Damsté, J. S. S., Le, P. D., Muyzer, G., Wagner, M., van Loosdrecht, M. C. M., & Daims, H. (2012). Nitrification expanded: Discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. The ISME Journal, 6, 2245-2256. https://doi.org/10.1038/ismej.2012.70.
Spencer-Jones, C. L. (2015). Novel concepts derived from microbial biomarkers in the Congo System: Implications for continental methane cycling (PhD Thesis).
Spieck, E., & Bock, E. (2005). The lithoautotrophic nitrite-oxidizing bacteria. In W. B. Whitman, F. Rainey, P. Kämpfer, M. Trujillo, J. Chun, P. DeVos, B. Hedlund, & S. Dedysh (Eds.), Bergey’s manual of systematics of archaea and bacteria (pp. 1-10). John Wiley & Sons Ltd.
Spieck, E., & Lipski, A. (2011). Cultivation, growth physiology, and chemotaxonomy of nitrite-oxidizing bacteria. In M. G. Klotz (Ed.), Research on nitrification and related processes, part A, Methods in enzymology (pp. 109-130). Elsevier.
Spieck, E., Sass, K., Keuter, S., Hirschmann, S., Spohn, M., Indenbirken, D., Kop, L. F. M., Lücker, S., & Giaveno, A. (2020) Defining culture conditions for the hidden nitrite-oxidizing bacterium Nitrolancea. Frontiers in Microbiology 11, 1522.
Spieck, E., Spohn, M., Wendt, K., Bock, E., Shively, J., Frank, J., Indenbirken, D., Alawi, M., Lücker, S., & Hüpeden, J. (2020). Extremophilic nitrite-oxidizing Chloroflexi from Yellowstone hot springs. The ISME Journal, 14, 364-379. https://doi.org/10.1038/s41396-019-0530-9.
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313. https://doi.org/10.1093/bioinformatics/btu033.
Strickland, J. D. H., & Parsons, T. R. (1972). Ammonium and nitrite. In J. C. Stevenson, J. Watson, J. M. Reinhart, & D. G. Cook (Eds.), A practical handbook of seawater analysis (pp. 77-80). Fisheries Research Board of Canada.
Sturt, H. F., Summons, R. E., Smith, K., Elvert, M., & Hinrichs, K.-U. (2004). Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry - New biomarkers for biogeochemistry and microbial ecology. Rapid Communications in Mass Spectrometry, 18, 617-628. https://doi.org/10.1002/rcm.1378.
Summons, R. E., Jahnke, L. L., Hope, J. M., & Logan, G. A. (1999). 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554-557. https://doi.org/10.1038/23005.
Talbot, H. M., Bischoff, J., Inglis, G. N., Collinson, M. E., & Pancost, R. D. (2016). Polyfunctionalised bio- and geohopanoids in the Eocene Cobham Lignite. Organic Geochemistry, 96, 77-92. https://doi.org/10.1016/j.orggeochem.2016.03.006.
Talbot, H. M., Handley, L., Spencer-Jones, C. L., Dinga, B. J., Schefuß, E., Mann, P. J., Poulsen, J. R., Spencer, R. G. M., Wabakanghanzi, J. N., & Wagner, T. (2014). Variability in aerobic methane oxidation over the past 1.2 Myrs recorded in microbial biomarker signatures from Congo fan sediments. Geochimica et Cosmochimica Acta, 133, 387-401. https://doi.org/10.1016/j.gca.2014.02.035.
Talbot, H. M., McClymont, E. L., Inglis, G. N., Evershed, R. P., & Pancost, R. D. (2016). Origin and preservation of bacteriohopanepolyol signatures in Sphagnum peat from Bissendorfer Moor (Germany). Organic Geochemistry, 97, 95-110. https://doi.org/10.1016/j.orggeochem.2016.04.011.
Talbot, H. M., Rohmer, M., & Farrimond, P. (2007). Structural characterisation of unsaturated bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 21, 1613-1622. https://doi.org/10.1002/rcm.2997.
Talbot, H. M., Summons, R. E., Jahnke, L. L., Cockell, C. S., Rohmer, M., & Farrimond, P. (2008). Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings. Organic Geochemistry, 39, 232-263. https://doi.org/10.1016/j.orggeochem.2007.08.006.
Tang, T., Mohr, W., Sattin, S. R., Rogers, D. R., Girguis, P. R., & Pearson, A. (2017). Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180T grown photoautotrophically and photoheterotrophically. Geobiology, 15, 324-339.
Thiel, V., Blumenberg, M., Pape, T., Seifert, R., & Michaelis, W. (2003). Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Organic Geochemistry, 34, 81-87. https://doi.org/10.1016/S0146-6380(02)00191-2.
Tyrrell, T. (1999). The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400, 525-531. https://doi.org/10.1038/22941.
Van Cappellen, P., & Ingall, E. D. (1996). Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science, 271, 493-496. https://doi.org/10.1126/science.271.5248.493.
van der Meer, M. T. J., Schouten, S., & Sinninghe Damsté, J. S. (1998). The effect of the reversed tricarboxylic acid cycle on the 13C contents of bacterial lipids. Geochimica et Cosmochimica Acta, 28, 527-533.
van Dongen, B. E., Talbot, H. M., Schouten, S., Pearson, P. N., & Pancost, R. D. (2006). Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area, Tanzania. Organic Geochemistry, 37, 539-557. https://doi.org/10.1016/j.orggeochem.2006.01.003.
van Kessel, M. A. H. J., Speth, D. R., Albertsen, M., Nielsen, P. H., Op den Camp, H. J. M., Kartal, B., Jetten, M. S. M., & Lücker, S. (2015). Complete nitrification by a single microorganism. Nature, 528, 555-559. https://doi.org/10.1038/nature16459.
Wakeham, S. G., Amann, R., Freeman, K. H., Hopmans, E. C., Jørgensen, B. B., Putnam, I. F., Schouten, S., Sinninghe Damsté, J. S., Talbot, H. M., & Woebken, D. (2007). Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Organic Geochemistry, 38, 2070-2097. https://doi.org/10.1016/j.orggeochem.2007.08.003.
Wakeham, S. G., Turich, C., Schubotz, F., Podlaska, A., Li, X. N., Varela, R., Astor, Y., Sáenz, J. P., Rush, D., Sinninghe Damsté, J. S., Summons, R. E., Scranton, M. I., Taylor, G. T., & Hinrichs, K.-U. (2012). Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin. Deep Sea Research Part I: Oceanographic Research Papers, 63, 133-156. https://doi.org/10.1016/j.dsr.2012.01.005.
Ward, B. B., & Carlucci, A. F. (1985). Marine ammonia- and nitrite-oxidizing bacteria: Serological diversity determined by immunofluorescence in culture and in the environment. Applied and Environmental Microbiology, 50, 8.
Ward, B. B., Glover, H. E., & Lipschultz, F. (1989). Chemoautotrophic activity and nitrification in the oxygen minimum zone off Peru. Deep Sea Research Part A. Oceanographic Research Papers, 36, 1031-1051. https://doi.org/10.1016/0198-0149(89)90076-9.
Warren, M. J., Raux, E., Schubert, H. L., & Escalante-Semerena, J. C. (2002). The biosynthesis of adenosylcobalamin (vitamin B12). Natural Product Reports, 19, 390-412. https://doi.org/10.1039/b108967f.
Watson, S. W., & Waterbury, J. B. (1971). Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp. Archiv für Mikrobiologie, 77, 203-230. https://doi.org/10.1007/BF00408114.
Welander, P. V., Coleman, M. L., Sessions, A. L., Summons, R. E., & Newman, D. K. (2010). Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proceedings of the National Academy of Sciences of the United States of America, 107, 8537-8542. https://doi.org/10.1073/pnas.0912949107.
Welander, P. V., Doughty, D. M., Wu, C.-H., Mehay, S., Summons, R. E., & Newman, D. K. (2012). Identification and characterization of Rhodopseudomonas palustris TIE-1 hopanoid biosynthesis mutants. Geobiology, 10, 163-177. https://doi.org/10.1111/j.1472-4669.2011.00314.x.
Welander, P. V., Hunter, R. C., Zhang, L., Sessions, A. L., Summons, R. E., & Newman, D. K. (2009). Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. Journal of Bacteriology, 191, 6145-6156.
Welander, P. V., & Summons, R. E. (2012). Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proceedings of the National Academy of Sciences of the United States of America, 109, 12905-12910. https://doi.org/10.1073/pnas.1208255109.
Williams, T. J., Zhang, C. L., Scott, J. H., & Bazylinski, D. A. (2006). Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Applied and Environmental Microbiology, 72, 1322-1329. https://doi.org/10.1128/AEM.72.2.1322-1329.2006.
Wu, C.-H., Bialecka-Fornal, M., & Newman, D. K. (2015). Methylation at the C-2 position of hopanoids increases rigidity in native bacterial membranes. eLife, 4, e05663.
Zhu, C., Talbot, H. M., Wagner, T., Pan, J.-M., & Pancost, R. D. (2011). Distribution of hopanoids along a land to sea transect: Implications for microbial ecology and the use of hopanoids in environmental studies. Limnology and Oceanography, 56, 1850-1865. https://doi.org/10.4319/lo.2011.56.5.1850.
فهرسة مساهمة: Keywords: bacteriohopanepolyols; biomarker; hopanoids; nitrifying bacteria; nitrite-oxidizing bacteria
المشرفين على المادة: 0 (Nitrites)
7440-44-0 (Carbon)
7664-41-7 (Ammonia)
تواريخ الأحداث: Date Created: 20220121 Date Completed: 20220420 Latest Revision: 20220628
رمز التحديث: 20231215
DOI: 10.1111/gbi.12484
PMID: 35060273
قاعدة البيانات: MEDLINE
الوصف
تدمد:1472-4669
DOI:10.1111/gbi.12484