دورية أكاديمية

The contributing factors of resistance or sensitivity to epigenetic drugs in the treatment of AML.

التفاصيل البيبلوغرافية
العنوان: The contributing factors of resistance or sensitivity to epigenetic drugs in the treatment of AML.
المؤلفون: Karimi Kelaye S; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran., Najafi F; Division of Hematology and Blood Banking, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran., Kazemi B; Division of Hematology and Blood Banking, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran., Foruzandeh Z; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran., Seif F; Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran., Solali S; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ssolali@gmail.com., Alivand MR; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. MohammadReza_Alivand@yahoo.com.
المصدر: Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico [Clin Transl Oncol] 2022 Jul; Vol. 24 (7), pp. 1250-1261. Date of Electronic Publication: 2022 Jan 25.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Country of Publication: Italy NLM ID: 101247119 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1699-3055 (Electronic) Linking ISSN: 1699048X NLM ISO Abbreviation: Clin Transl Oncol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2010- >: Milan : Springer Italia
Original Publication: Barcelona, Spain : Doyma, c2005-
مواضيع طبية MeSH: Leukemia, Myeloid, Acute*/drug therapy , Leukemia, Myeloid, Acute*/genetics , Leukemia, Myeloid, Acute*/pathology, Bone Marrow/pathology ; Epigenesis, Genetic ; Humans ; Mutation
مستخلص: Drug resistance is the drug-effectiveness reduction in treatment and is a serious problem in oncology and infections. In oncology, drug resistance is a complicated process resulting from enhancing the function of a pump that transports drugs out of tumor cells, or acquiring mutations in drug target. Surprisingly, most drugs are very effective in the early stages, but the response to the drug wears off over time and resistance eventually develops. Drug resistance is caused by genetic and epigenetic changes that affect cancer cells and the tumor environment. The study of inherited changes in the phenotype without changes in the DNA sequence is called epigenetics. Because of reversible changes in epigenetics, they are an attractive target for therapy. Some of these epigenetic drugs are effective in treating cancers like acute myeloid leukemia (AML), which is characterized by the accumulation and proliferation of immature hematopoietic cells in the blood and bone marrow. In this article, we outlined the various contributing factors involved in resistance or sensitivity to epigenetic drugs in the treatment of AML.
(© 2022. The Author(s), under exclusive licence to Federación de Sociedades Españolas de Oncología (FESEO).)
References: Smitheman KN, et al. Lysine specific demethylase 1 inactivation enhances differentiation and promotes cytotoxic response when combined with all-trans retinoic acid in acute myeloid leukemia across subtypes. Haematologica. 2019;104(6):1156. (PMID: 305148046545850)
Shallis RM, et al. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 2019;36:70–87. (PMID: 31101526)
Bates SE. Epigenetic therapies for cancer. N Engl J Med. 2020;383(7):650–63. (PMID: 32786190)
Sun Y, Chen B-R, Deshpande A. Epigenetic regulators in the development, maintenance, and therapeutic targeting of acute myeloid leukemia. Front Oncol. 2018;8:41. (PMID: 295275165829038)
Biswas S, Rao CM. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol. 2018;837:8–24. (PMID: 30125562)
Rahmati Y, Najafi S and Alivand M-R. Integrative analysis of DNA methylation and gene expression profiles to explore potential biomarkers of glioblastoma. 2021.
Talebian S, et al. The role of epigenetics and non-coding RNAs in autophagy: a new perspective for thorough understanding. Mech Ageing Dev. 2020;190: 111309. (PMID: 32634442)
Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood J Am Soc Hematol. 2016;127(1):42–52.
Cheng Y, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4(1):1–39.
Mansoori B, et al. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7(3):339. (PMID: 290712155651054)
Zhang J, Gu Y, Chen B. Mechanisms of drug resistance in acute myeloid leukemia. Onco Targets Ther. 2019;12:1937. (PMID: 308810456417008)
Ball B, et al. Hypomethylating agent combination strategies in myelodysplastic syndromes: hopes and shortcomings. Leuk Lymphoma. 2017;58(5):1022–36. (PMID: 27654579)
Jin S, Cojocari D, Purkal JJ, Popovic R, Talaty NN, Xiao Y, et al. 5-Azacitidine induces NOXA to prime AML cells for venetoclax-mediated apoptosis. Clin Cancer Res. 2020;26(13):3371–83. (PMID: 32054729)
Kim S, Shin D-Y, Kim D, Oh S, Hong J, Kim I, et al. Gene expression profiles identify biomarkers of resistance to decitabine in myelodysplastic syndromes. Cells. 2021;10(12):3494. (PMID: 349440068700444)
Gruber E, Franich RL, Shortt J, Johnstone RW, Kats LM. Distinct and overlapping mechanisms of resistance to azacytidine and guadecitabine in acute myeloid leukemia. Leukemia. 2020;34(12):3388–92. (PMID: 32655143)
Barazeghi E, Hellman P, Norlén O, Westin G, Stålberg P. EZH2 presents a therapeutic target for neuroendocrine tumors of the small intestine. Sci Rep. 2021;11(1):1–13.
Julia E, Salles G. EZH2 inhibition by tazemetostat: mechanisms of action, safety and efficacy in relapsed/refractory follicular lymphoma. Future Oncol. 2021;17(17):2127–40. (PMID: 33709777)
Sarno F, Nebbioso A, Altucci L. DOT1L: a key target in normal chromatin remodelling and in mixed-lineage leukaemia treatment. Epigenetics. 2020;15(5):439–53. (PMID: 31790636)
Megiorni F, Camero S, Pontecorvi P, Camicia L, Marampon F, Ceccarelli S, et al. OTX015 Epi-drug exerts antitumor effects in ovarian cancer cells by blocking GNL3-mediated radioresistance mechanisms: cellular, molecular and computational evidence. Cancers. 2021;13(7):1519. (PMID: 338062328059141)
Ramsey HE, Greenwood D, Zhang S, Childress M, Arrate MP, Gorska AE, et al. BET inhibition enhances the antileukemic activity of low-dose venetoclax in acute myeloid leukemia. Clin Cancer Res. 2021;27(2):598–607. (PMID: 33148670)
Chen NC, Borthakur G, Pemmaraju N. Bromodomain and extra-terminal (BET) inhibitors in treating myeloid neoplasms. Leuk Lymphoma. 2021;62(3):528–37. (PMID: 33161793)
Cousin S, Blay JY, Garcia IB, de Bono JS, Le Tourneau C, Moreno V, et al. Safety, pharmacokinetic, pharmacodynamic and clinical activity of molibresib for the treatment of nuclear protein of the testis carcinoma and other cancers: results of a Phase I/II open-label, dose escalation study. Int J Cancer. 2021. https://doi.org/10.1002/ijc.33861 . (PMID: 10.1002/ijc.3386134724226)
Su S, Shi X, Xu W, Li Y, Chen X, Jia S, et al. Antifungal activity and potential mechanism of panobinostat in combination with fluconazole against Candida albicans. Front Microbiol. 2020;11:1584. (PMID: 327654547378535)
Paillas S, Then CK, Kilgas S, Ruan J-L, Thompson J, Elliott A, et al. The histone deacetylase inhibitor Romidepsin spares normal tissues while acting as an effective radiosensitizer in bladder tumors in vivo. Int J Radiat Oncol Biol Phys. 2020;107(1):212–21. (PMID: 319879707181176)
Xia C, He Z, Cai Y, Liang S. Vorinostat upregulates MICA via the PI3K/Akt pathway to enhance the ability of natural killer cells to kill tumor cells. Eur J Pharmacol. 2020;875: 173057. (PMID: 32135122)
Truong AS, Zhou M, Krishnan B, Utsumi T, Manocha U, Stewart KG, et al. Entinostat induces antitumor immune responses through immune editing of tumor neoantigens. J Clin Investig. 2021;131(16): e138560. (PMID: 8363284)
Wu W, Wang J, Liang J, Zhou Q, Liang Y. Mocetinostat suppresses epidural fibrosis following laminectomy by inhibiting myofibroblast activation and increasing apoptosis. Eur Rev Med Pharmacol Sci. 2020;24:4467–75. (PMID: 32373984)
Choe S, Wang H, DiNardo CD, Stein EM, de Botton S, Roboz GJ, et al. Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AML. Blood Adv. 2020;4(9):1894–905. (PMID: 323805387218420)
Heiblig M, Hachem-Khalife S, Willekens C, Micol J-B, Paci A, Penard-Lacronique V, et al. Enasidenib for the treatment of relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase 2 mutation. Expert Rev Precis Med Drug Dev. 2020;5(6):421–8.
Sadhu MN, Sivanandhan D, Gajendran C, Tantry S, Dewang P, Murugan K, et al. Novel dual LSD1/HDAC6 inhibitors for the treatment of multiple myeloma. Bioorg Med Chem Lett. 2021;34: 127763.
Wong KK, Lawrie CH, Green TM. Oncogenic roles and inhibitors of DNMT1, DNMT3A, and DNMT3B in acute myeloid leukaemia. Biomarker Insights. 2019;14:1177271919846454. (PMID: 311054266509988)
Zare M, et al. Aberrantly miRNA promoter methylation and EMT-involving miRNAs in breast cancer metastasis: diagnosis and therapeutic implications. J Cell Physiol. 2017;233(5):3729–44. (PMID: 28771724)
Diesch J, et al. A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin Epigenetics. 2016;8(1):1–11.
Sarmento-Ribeiro AB, et al. The emergence of drug resistance to targeted cancer therapies: clinical evidence. Drug Resist Updates. 2019;47: 100646.
Duchmann M, Itzykson R. Clinical update on hypomethylating agents. Int J Hematol. 2019;110(2):161–9. (PMID: 31020568)
Yeh C-H, Moles R, Nicot C. Clinical significance of microRNAs in chronic and acute human leukemia. Mol Cancer. 2016;15(1):1–16.
Li L, et al. Tumor suppressor activity of miR-451: Identification of CARF as a new target. Sci Rep. 2018;8(1):1–11.
Daher-Reyes GS, Merchan BM, Yee KW. Guadecitabine (SGI-110): an investigational drug for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Expert Opin Investig Drugs. 2019;28(10):835–49. (PMID: 31510809)
Crabb S, et al. SPIRE–combining SGI-110 with cisplatin and gemcitabine chemotherapy for solid malignancies including bladder cancer: study protocol for a phase Ib/randomised IIa open label clinical trial. Trials. 2018;19(1):1–10.
Chung W, et al. Genomic and epigenomic predictors of response to guadecitabine in relapsed/refractory acute myelogenous leukemia. Clin Epigenetics. 2019;11(1):1–12.
Castelli G, Pelosi E, Testa U. Targeting histone methyltransferase and demethylase in acute myeloid leukemia therapy. Onco Targets Ther. 2018;11:131. (PMID: 29343972)
Mechaal A, et al. EZH2, new diagnosis and prognosis marker in acute myeloid leukemia patients. Adv Med Sci. 2019;64(2):395–401. (PMID: 31331874)
Gulati N, Béguelin W, Giulino-Roth L. Enhancer of zeste homolog 2 (EZH2) inhibitors. Leuk Lymphoma. 2018;59(7):1574–85. (PMID: 294734316659997)
Wang Q, et al. Elevating H3K27me3 level sensitizes colorectal cancer to oxaliplatin. J Mol Cell Biol. 2020;12(2):125–37. (PMID: 31065671)
Bisserier M, Wajapeyee N. Mechanisms of resistance to EZH2 inhibitors in diffuse large B-cell lymphomas. Blood J Am Soc Hematol. 2018;131(19):2125–37.
Pollock J. Targeting the menin-MLL-LEDGF Interaction with Small Molecule Inhibitors. 2016.
Chen J, Glasser CL. New and emerging targeted therapies for pediatric acute myeloid leukemia (AML). Children. 2020;7(2):12. (PMID: 7072702)
Stathis A, Bertoni F. BET proteins as targets for anticancer treatment. Cancer Discov. 2018;8(1):24–36. (PMID: 29263030)
Fu L-L, et al. Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery. Oncotarget. 2015;6(8):5501. (PMID: 258499384467383)
Jia Y, Chng W-J, Zhou J. Super-enhancers: critical roles and therapeutic targets in hematologic malignancies. J Hematol Oncol. 2019;12(1):1–17.
Coudé M-M, et al. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget. 2015;6(19):17698. (PMID: 259898424627339)
Ferri E, Petosa C, McKenna CE. Bromodomains: structure, function and pharmacology of inhibition. Biochem Pharmacol. 2016;106:1–18. (PMID: 26707800)
Stubbs MC, et al. The novel bromodomain and extraterminal domain inhibitor INCB054329 induces vulnerabilities in myeloma cells that inform rational combination strategies. Clin Cancer Res. 2019;25(1):300–11. (PMID: 30206163)
Magliulo D, Bernardi R, Messina S. Lysine-specific demethylase 1A as a promising target in acute myeloid leukemia. Front Oncol. 2018;8:255. (PMID: 300731496060236)
Bayat S, et al. Downregulation of HDAC2 and HDAC3 via oleuropein as a potent prevention and therapeutic agent in MCF-7 breast cancer cells. J Cell Biochem. 2019;120(6):9172–80. (PMID: 30618185)
Garcia-Rill E. Neuroepigenetics of arousal and the formulation of the self. In: Arousal in neurological and psychiatric diseases. Elsevier; 2019. p. 221–33.
Bruzzese F, et al. Panobinostat synergizes with zoledronic acid in prostate cancer and multiple myeloma models by increasing ROS and modulating mevalonate and p38-MAPK pathways. Cell Death Dis. 2013;4(10):e878–e878. (PMID: 241578723920938)
Uhr K, et al. MicroRNAs as possible indicators of drug sensitivity in breast cancer cell lines. PloS One. 2019;14(5): e0216400. (PMID: 310634876504094)
Rahmani M, et al. PI3K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM-and MCL-1–dependent mechanisms in vitro and in vivo. Clin Cancer Res. 2014;20(18):4849–60. (PMID: 250708364166554)
Smolewski P, Robak T. The discovery and development of romidepsin for the treatment of T-cell lymphoma. Expert Opin Drug Discov. 2017;12(8):859–73. (PMID: 28641053)
Chakraborty AR, et al. MAPK pathway activation leads to Bim loss and histone deacetylase inhibitor resistance: rationale to combine romidepsin with an MEK inhibitor. Blood J Am Soc Hematol. 2013;121(20):4115–25.
Robey RW, et al. Histone deacetylase inhibitors: emerging mechanisms of resistance. Mol Pharm. 2011;8(6):2021–31. (PMID: 218993433230675)
Lee J-H, et al. Role of checkpoint kinase 1 (Chk1) in the mechanisms of resistance to histone deacetylase inhibitors. Proc Natl Acad Sci. 2011;108(49):19629–34. (PMID: 221062823241758)
Uba AI, Yelekci K. Exploration of the binding pocket of histone deacetylases: the design of potent and isoform-selective inhibitors. Turk J Biol. 2017;41(6):901–18. (PMID: 308148556375539)
Kang DW, et al. Phospholipase D1 is upregulated by vorinostat and confers resistance to vorinostat in glioblastoma. J Cell Physiol. 2021;236(1):549–60. (PMID: 32869317)
Lee S-C, et al. Essential role of insulin-like growth factor 2 in resistance to histone deacetylase inhibitors. Oncogene. 2016;35(42):5515–26. (PMID: 270869265069101)
Min H-Y, et al. Essential role of DNA methyltransferase 1–mediated transcription of insulin-like growth factor 2 in resistance to histone deacetylase inhibitors. Clin Cancer Res. 2017;23(5):1299–311. (PMID: 27582487)
Ding L, et al. Targeting the autophagy in bone marrow stromal cells overcomes resistance to vorinostat in chronic lymphocytic leukemia. Onco Targets Ther. 2018;11:5151. (PMID: 302102366114474)
Trapani D, et al. Entinostat for the treatment of breast cancer. Expert Opin Investig Drugs. 2017;26(8):965–71. (PMID: 28718331)
Tanioka M, et al. Identification of Jun loss promotes resistance to histone deacetylase inhibitor entinostat through Myc signaling in luminal breast cancer. Genome Med. 2018;10(1):1–14.
Zhou Z, et al. Entinostat combined with Fludarabine synergistically enhances the induction of apoptosis in TP53 mutated CLL cells via the HDAC1/HO-1 pathway. Life Sci. 2019;232: 116583. (PMID: 31226417)
Fournel M, et al. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol Cancer Ther. 2008;7(4):759–68. (PMID: 18413790)
Sun X-J, Chen Z, Chen S-J. Mutations in DNA methyltransferases and demethylases. Elsevier; 2017.
Nassereddine S, Lap CJ, Tabbara IA. Evaluating ivosidenib for the treatment of relapsed/refractory AML: design, development, and place in therapy. Onco Targets Ther. 2019;12:303. (PMID: 30643428)
Harding JJ, et al. Isoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibition. Cancer Discov. 2018;8(12):1540–7. (PMID: 303557246699636)
Reed DR, et al. Enasidenib in acute myeloid leukemia: clinical development and perspectives on treatment. Cancer Manag Res. 2019;11:8073. (PMID: 315649686724422)
Amatangelo MD, et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood J Am Soc Hematol. 2017;130(6):732–41.
Intlekofer AM, et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature. 2018;559(7712):125–9. (PMID: 299507296121718)
Perillo B, et al. LSD1: more than demethylation of histone lysine residues. Exp Mol Med. 2020;52(12):1936–47. (PMID: 333186318080763)
Mohammad HP, et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell. 2015;28(1):57–69. (PMID: 26175415)
معلومات مُعتمدة: 67011 Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences
فهرسة مساهمة: Keywords: Acute myeloid leukemia; Chromatin modification; Drug resistance; Epigenetic drugs; Epigenetic therapy
تواريخ الأحداث: Date Created: 20220125 Date Completed: 20220615 Latest Revision: 20220615
رمز التحديث: 20231215
DOI: 10.1007/s12094-022-02776-0
PMID: 35076883
قاعدة البيانات: MEDLINE
الوصف
تدمد:1699-3055
DOI:10.1007/s12094-022-02776-0