دورية أكاديمية

Production of More Potent Anti-Candida Labdane Diterpenes by Biotransformation Using Cunninghamella elegans.

التفاصيل البيبلوغرافية
العنوان: Production of More Potent Anti-Candida Labdane Diterpenes by Biotransformation Using Cunninghamella elegans.
المؤلفون: Sousa IP; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil., De Sousa Teixeira MV; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil., Freitas JA; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil., Ferreira AG; Laboratory of Nuclear Magnetic Resonance, Chemistry Department, Federal University of São Carlos, São Carlos, 13565-905, SP, Brazil., Pires LM; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil., Santos RA; Nucleus of Research in Sciences and Technology, University of Franca, Franca, 14404-600, SP, Brazil., Heleno VCG; Nucleus of Research in Sciences and Technology, University of Franca, Franca, 14404-600, SP, Brazil., Furtado NAJC; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil.
المصدر: Chemistry & biodiversity [Chem Biodivers] 2022 Mar; Vol. 19 (3), pp. e202100757. Date of Electronic Publication: 2022 Feb 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Verlag Helvetica Chimica Acta Country of Publication: Switzerland NLM ID: 101197449 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1612-1880 (Electronic) Linking ISSN: 16121872 NLM ISO Abbreviation: Chem Biodivers Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Zürich, Switzerland : Hoboken, NJ : Verlag Helvetica Chimica Acta ; Distributed in the USA by Wiley, c2004-
مواضيع طبية MeSH: Candida*/metabolism , Diterpenes*/metabolism , Diterpenes*/pharmacology, Antifungal Agents/pharmacology ; Biotransformation ; Cunninghamella ; Fluconazole ; Microbial Sensitivity Tests
مستخلص: Candida species are responsible for causing invasive candidiasis with high mortality rate and their resistance to available antifungal drugs is a major clinical challenge. Biotransformation process of the labdane diterpene ent-labd-8(17)-en-15,18-dioic acid (1) carried out with Cunninghamella elegans afforded five new derivatives (compounds 2-6). Unusual regioselective hydroxylation of the methyl group at the C-20 position of labdane-type diterpene was achieved and all compounds were subjected to cytotoxicity and antifungal evaluations. Compound 1 and its derivatives were not cytotoxic to normal (MCF-10A) and tumor (MCF-7) cell lines. Compounds 2 and 3 exhibited fungistatic activity against all tested Candida strains at lower concentrations than fluconazole. Both compounds also showed the strongest fungicidal activity against C. albicans, which is the most prevalent fungal agent involved in candidemia.
(© 2022 Wiley-VHCA AG, Zurich, Switzerland.)
References: A. C. Copsey, M. R. O. Barsottini, B. May, F. Xu, M. S. Albury, L. Young, A. L. Moore, ‘Kinetic characterisation and inhibitor sensitivity of Candida albicans and Candida auris recombinant AOX expressed in a self-assembled proteoliposome system’, Sci. Rep. 2021, 11, 14748.
P. G. Pappas, M. S. Lionakis, M. C. Arendrup, L. Ostrosky-Zeichner, B. J. Kullberg, ‘Invasive candidiasis’, Nat. Rev. Dis. Prim. 2018, 4, 18026.
M. I. Beredaki, M. C. Arendrup, J. W. Mouton, J. Meletiadis, ‘In vitro pharmacokinetic/pharmacodynamic model data suggest a potential role of new formulations of posaconazole against Candida krusei but not Candida glabrata infections’, Int. J. Antimicrob. Agents 2021, 57, 106291.
R. V. Daele, I. Spriet, J. Wauters, J. Maertens, T. Mercier, S. V. Hecke, R. Brüggemann, ‘Antifungal drugs: what brings the future?’, Med. Mycol. 2019, 57, S328-S343.
S. Mafu, P. Zerbe, ‘Plant diterpenoid metabolism for manufacturing the biopharmaceuticals of tomorrow: Prospects and challenges’, Phytochem. Rev. 2018, 17, 113-130.
Q. T. N. Tran, W. S. F. Wong, C. L. L. Chai, ‘Labdane diterpenoids as potential anti-inflammatory agents’, Pharmacol. Res. 2017, 124, 43-63.
M. Pal, T. Mishra, A. Kumar, S. K. Tewari, ‘ Biological evaluation of terrestrial and marine plant originated labdane diterpenes (a review)’, Pharm. Chem. J. 2016, 50, 558-567.
F. S. Vargas, P. D. O. de Almeida, E. S. P. Aranha, A. P. A. Boleti, P. Newton, M. C. de Vasconcellos, V. F. V. Junior, E. S. Lima, ‘Biological activities and cytotoxicity of diterpenes from Copaifera spp. oleoresins’, Molecules 2015, 20, 6194-6210.
A. N. Silva, A. C. F. Soares, M. M. W. Cabral, A. R. P. de Andrade, M. B. M. da Silva, C. H. G. Martins, R. C. S. Veneziani, S. R. Ambrósio, J. K. Bastos, V. C. G. Heleno, ‘Antitubercular activity increase in labdane diterpenes from Copaifera oleoresin through structural modification’, J. Braz. Chem. Soc. 2017, 28, 1106-1112.
I. P. Sousa, M. V. S. Teixeira, N. A. J. C. Furtado, ‘An overview of biotransformation and toxicity of diterpenes’, Molecules 2018, 23, 1387.
M. Rico-Martínez, F. G. Medina, J. G. Marrero, S. Osegueda-Robles, ‘Biotransformation of diterpenes’, RSC Adv. 2014, 4, 10627-10647.
D. Papaefthimiou, G. Diretto, O. C. Demurtas, P. Mini, P. Ferrante, G. Giuliano, A. K. Kanellis, ‘Heterologous production of labdane-type diterpenes in the green alga Chlamydomonas reinhardtii’, Phytochemistry 2019, 167, 112082.
R. da Trindade, J. K. da Silva, W. N. Setzer, ‘Copaifera of the neotropics: a review of the phytochemistry and pharmacology’, Int. J. Mol. Sci. 2018, 19, 1511.
IBGE. Instituto Brasileiro de Geografia e Estatística. https://sidra.ibge.gov.br/pesquisa/pevs/quadros/brasil/2020; Accessed December 8, 2021.
C. H. G. Borges, M. G. Cruz, L. J. Carneiro, J. J. M. Da Silva, J. K. Bastos, D. C. Tavares, P. F. De Oliveira, V. Rodrigues, R. C. S. Veneziani, R. L. T. Parreira, G. F. Caramori, G. R. Nagurniak, L. G. Magalhaes, S. R. Ambrósio, ‘Copaifera duckei oleoresin and its main non-volatile terpenes: In vitro schistosomicidal properties’, Chem. Biodiversity 2016, 13,1348-1356.
G. V. Símaro, M. Lemos, J. J. M. da Silva, V. P. Ribeiro, C. Arruda, A. H. Schneider, C. W. de Souza Wanderley, L. J. Carneiro, R. L. Mariano, S. R. Ambrósio, S. F. de Andrade, V. C. Banderó-Filho, A. Sasse, H. Sheridan, M. L. Andrade de Silva, J. K. Bastos, ‘Antinociceptive and anti-inflammatory activities of Copaifera pubiflora Benth oleoresin and its major metabolite ent-hardwickiic acid’, J. Ethnopharmacol. 2021, 271, 113883.
F. Abrão, T. S. Silva, C. L. Moura, S. R. Ambrósio, R. C. S. Veneziani, R. E. F. de Paiva, J. K. Bastos, C. H. G. Martins, ‘Oleoresins and naturally occurring compounds of Copaifera genus as antibacterial and antivirulence agents against periodontal pathogens’, Sci. Rep. 2021, 11, 4953.
L. J. Carneiro, T. O. Tasso, M. F. C. Santos, M. O. Goulart, R. A. Santos, J. K. Bastos, J. M. Silva, A. E. M. Crotti, R. L. T. Parreira, R. P. Orenha, R. C. S. Veneziani, S. R. Ambrósio, ‘Copaifera multijuga, Copaifera pubiflora and Copaifera trapezifolia oleoresins: chemical characterization and in vitro cytotoxic potential against tumoral cell lines’, J. Braz. Chem. Soc. 2020, 31, 1679-1689.
L. C. Oliveira, T. S. Porto, A. H. C. Junior, M. F. C. Santos, H. P. Ramos, G. H. Braun, L. A. de Lima Paula, J. K. Bastos, N. A. J. C. Furtado, R. L. T. Parreira, R. C. S. Veneziani, L. G. Magalhães, S. R. Ambrósio, ‘Schistosomicidal activity of kaurane, labdane and clerodane-type diterpenes obtained by fungal transformation’, Process Biochem. 2020, 98, 34-40.
I. P. de Sousa, A. G. Ferreira, A. E. M. Crotti, R. A. dos Santos, J. Kiermaier, B. Kraus, J. Heilmann, N. A. J. C. Furtado, ‘New antifungal ent-labdane diterpenes against Candida glabrata produced by microbial transformation of ent-polyalthic acid’, Bioorg. Chem. 2020, 95, 103560.
T. C. Carvalho, E. O. Silva, G. A. Soares, R. L. T. Parreira, S. R. Ambrósio, N. A. J. C. Furtado, ‘Fungal biocatalysts for labdane diterpene hydroxylation’, Bioprocess Biosyst. Eng. 2020, 43, 1051-1059.
J. A. Takahashi, D. C. Gomes, F. H. Lyra, G. F. dos Santos, L. R. Martins, ‘The remarkable structural diversity achieved in ent-kaurane diterpenes by fungal biotransformations’, Molecules 2014, 19, 1856-1886.
A. Rydevik, A. Hansson, A. Hellqvist, U. Bondesson, M. Hedeland, ‘A novel trapping system for the detection of reactive drug metabolites using the fungus Cunninghamella elegans and high resolution mass spectrometry’, Drug Test Anal. 2015, 7, 626-633.
K. Piska, D. Zelaszczyk, M. Jamrozik, P. Kubowicz-Kwaśny, E. Pękala, ‘Cunninghamella biotransformation - Similarities to human drug metabolism and its relevance for the drug discovery process’, Curr. Drug Metab. 2016, 17, 107-117.
K. Zawadzka, A. Felczak, J. Szemraj, K. Lisowska, ‘Novel metabolites from Cunninghamella elegans as a microbial model of the β-blocker carvedilol biotransformation in the environment’, Int. Biodeterior. Biodegrad. 2018, 127, 227-235.
K. E. Grafinger, A. Wilke, S. König, W. Weinmann, ‘Investigating the ability of microbial model Cunninghamella elegans for the metabolism of synthetic tryptamines’, Drug Test Anal. 2019, 11, 721-729.
C. A. Henrick, P. R. Jefferies, ‘The chemistry of the euphorbiaceae-XIII1. Flavones and minor dlterpenes from Ricinocarpus muricatus’, Tetrahedron 1965, 21, 3219-3228.
J. Bastard, D. K. Duc, M. Fetizon, M. J. Francis, P. K. Grant, R. T. Weavers, C. Kaneko, G. V. Baddeley, J. Bernaussau, I. R. Burfitt, P. M. Wovkulich, E. Wenkert, ‘Cmr spectroscopy of labdanic diterpenes and related substances’, J. Nat. Prod. 1984, 47, 592-599.
D. Schmitz, S. Janocha, F. M. Kiss, R. Bernhardt, ‘CYP106 A2-A versatile biocatalyst with high potential for biotechnological production of selectively hydroxylated steroid and terpenoid compounds’, Biochim. Biophys. Acta Proteins Proteomics 2018, 1866, 11-22.
R. M. Atlas, ‘Handbook of microbiological media’, CRC Press, Boca Raton, 1995.
Clinical Laboratory Standards Institute, ‘Reference methods for broth dilution antifungal susceptibility testing of yeasts’, CLSI document M27-S3, Wayne, 2008.
معلومات مُعتمدة: 2011/13630-7 São Paulo Research Foundation, FAPESP; 2016/25201-7 São Paulo Research Foundation, FAPESP; 306345/2016-1 National Council for Scientific and Technological Development, CNPq; 301924/2019-8 National Council for Scientific and Technological Development, CNPq; 001 Coordination for the Improvement of Higher Education Personnel
فهرسة مساهمة: Keywords: Cunninghamella elegans; anti-Candida activity; biotransformation; labdane diterpenes
المشرفين على المادة: 0 (Antifungal Agents)
0 (Diterpenes)
8VZV102JFY (Fluconazole)
SCR Organism: Cunninghamella elegans
تواريخ الأحداث: Date Created: 20220129 Date Completed: 20220322 Latest Revision: 20220322
رمز التحديث: 20231215
DOI: 10.1002/cbdv.202100757
PMID: 35092349
قاعدة البيانات: MEDLINE
الوصف
تدمد:1612-1880
DOI:10.1002/cbdv.202100757