دورية أكاديمية

The "Not" Good, the Bad and the Ugly: Prevention and Management of Common Intraoperative and Delayed Complications in Orthopedic Sports Medicine Surgical Procedures.

التفاصيل البيبلوغرافية
العنوان: The "Not" Good, the Bad and the Ugly: Prevention and Management of Common Intraoperative and Delayed Complications in Orthopedic Sports Medicine Surgical Procedures.
المؤلفون: DeFroda SF; Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL., Perry AK, Verma NN
المصدر: Sports medicine and arthroscopy review [Sports Med Arthrosc Rev] 2022 Mar 01; Vol. 30 (1), pp. 42-53.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wolters Kluwer Health, Inc Country of Publication: United States NLM ID: 9315689 Publication Model: Print Cited Medium: Internet ISSN: 1538-1951 (Electronic) Linking ISSN: 10628592 NLM ISO Abbreviation: Sports Med Arthrosc Rev Subsets: MEDLINE
أسماء مطبوعة: Publication: <2015- > : Philadelphia, PA : Wolters Kluwer Health, Inc.
Original Publication: New York, NY : Raven Press, c1993-
مواضيع طبية MeSH: Orthopedic Procedures*/adverse effects , Sports Medicine*, Arthroscopy ; Humans
مستخلص: Despite advances in techniques designed to make arthroscopic sports medicine procedures simple, complications still arise in the operating room; even in the most trained hands. However, what marks a skilled surgeon is not just the ability to steer the ship amidst smooth seas, but a knack for getting out of trouble once things deviate from the set course. Each surgical case presents a unique challenge, and no 2 are the same. For this reason, a true expert surgeon must know how to deal with "complications" ranging from a mild swell to a raging storm. In this review we present strategies to prevent and navigate some of the most common, and fearsome complications a sports medicine surgeon may face during surgery. A great surgeon is one that acknowledges that throughout their career it is not a question of "if" these situations will arise, but "when"; and preparation is the key to success.
Competing Interests: Disclosure: The authors declare no conflict of interest.
(Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.)
References: Panesar SS, Carson-Stevens A, Salvilla SA, et al. Patient safety in orthopedic surgery: prioritizing key areas of iatrogenic harm through an analysis of 48,095 incidents reported to a national database of errors. Drug Healthc Patient Saf. 2013;5:57–65.
Compton J, Slattery M, Coleman M, et al. Iatrogenic articular cartilage injury in arthroscopic hip and knee videos and the potential for cartilage cell death when simulated in a bovine model. Arthroscopy. 2020;36:2114–2121.
Burnham JM, Malempati CS, Carpiaux A, et al. Anatomic femoral and tibial tunnel placement during anterior cruciate ligament reconstruction: anteromedial portal all-inside and outside-in techniques. Arthrosc Tech. 2017;6:e275–e282.
Dhawan A, Gallo RA, Lynch SA. Anatomic tunnel placement in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg. 2016;24:443–454.
Strauss E, Barker JU, McGill K, et al. Can anatomic femoral tunnel placement be achieved using a transtibial technique for hamstring anterior cruciate ligament reconstruction? Am J Sports Med. 2011;39:1263–1269.
Morgan JA, Dahm D, Levy B, et al. Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg. 2012;25:361–368.
Kim Y-M, Joo Y-B, Lee K-Y, et al. Femoral footprint for anatomical single-bundle anterior cruciate ligament reconstruction: A Cadaveric Study. Knee Surg Relat Res. 2018;30:128–132.
Parkinson B, Gogna R, Robb C, et al. Anatomic ACL reconstruction: the normal central tibial footprint position and a standardised technique for measuring tibial tunnel location on 3D CT. Knee Surg Sports Traumatol Arthrosc. 2017;25:1568–1575.
Tensho K, Shimodaira H, Aoki T, et al. Bony landmarks of the anterior cruciate ligament tibial footprint: a detailed analysis comparing 3-dimensional computed tomography images to visual and histological evaluations. Am J Sports Med. 2014;42:1433–1440.
Kassam A-AM, Schranz PJ, Mandalia VI. Anatomic anterior cruciate ligament reconstruction: the use of the anterior horn of the lateral meniscus as a guide to tibial tunnel placement. Arthrosc Tech. 2016;5:e809–e814.
Mitchell JJ, Dean CS, Chahla J, et al. Posterior wall blowout in anterior cruciate ligament reconstruction. Orthop J Sports Med. 2016;4:6.
Rue J-PH, Busam ML, Detterline AJ, et al. Posterior wall blowout in anterior cruciate ligament reconstruction: avoidance, recognition, and salvage. J Knee Surg. 2008;21:235–240.
Hammond KE, Dierckman BD, Potini VC, et al. Lateral femoral cortical breach during anterior cruciate ligament reconstruction: a biomechanical analysis. Arthroscopy. 2012;28:365–371.
Herbort M, Heletta S, Raschke MJ, et al. Accidental perforation of the lateral femoral cortex in ACL reconstruction: an investigation of mechanical properties of different fixation techniques. Arthroscopy. 2012;28:382–389.
Hammond KE, Potini V, Dierckman BD, et al. Femoral Tunnel “Blowout” During ACL Reconstruction: a Biomechanical Analysis (SS-65). Arthroscopy. 2020;27:e64–e65.
Lynch TS, Parker RD, Patel RM, et al. The Impact of the Multicenter Orthopaedic Outcomes Network (MOON) Research on Anterior Cruciate Ligament Reconstruction and Orthopaedic Practice. J Am Acad Orthop Surg. 2015;23:154–163.
Chen JL, Allen CR, Stephens TE, et al. Differences in mechanisms of failure, intraoperative findings, and surgical characteristics between single- and multiple-revision ACL reconstructions: A MARS cohort study. Am J Sports Med. 2013;41:1571–1578.
Akhtar MA, Bhattacharya R, Ohly N, et al. Revision ACL reconstruction—causes of failure and graft choices. Br J Sports Med. 2011;45:A15–A16.
Bach BR Jr, Verma NN. Curbside Consultation of the ACL: 49 Clinical Questions. Thorofare, NJ: SLACK Incorporated; 2008.
Conner CS, Perez BA, Morris RP, et al. Three femoral fixation devices for anterior cruciate ligament reconstruction: comparison of fixation on the lateral cortex versus the anterior cortex. Arthroscopy. 2010;26:796–807.
Kamelger FS, Onder U, Schmoelz W, et al. Suspensory fixation of grafts in anterior cruciate ligament reconstruction: a biomechanical comparison of 3 implants. Arthroscopy. 2009;25:767–776.
Busam ML, Provencher MT, Bach BR. Complications of anterior cruciate ligament reconstruction with bone-patellar tendon-bone constructs: care and prevention. Am J Sports Med. 2008;36:379–394.
Verma NN, Dennis MG, Carreira DS, et al. Preliminary clinical results of two techniques for addressing graft tunnel mismatch in endoscopic anterior cruciate ligament reconstruction. J Knee Surg. 2005;18:183–191.
Yanke A, Ellman MB, Sherman SL, et al. Graft-tunnel mismatch in bone-tendon-bone ACL reconstruction: prevention and treatment. Tech Orthop. 2012;27:153–157.
Goldstein JL, Verma N, McNickle AG, et al. Avoiding mismatch in allograft anterior cruciate ligament reconstruction: correlation between patient height and patellar tendon length. Arthroscopy. 2010;26:643–650.
Brown JA, Brophy RH, Franco J, et al. Avoiding allograft length mismatch during anterior cruciate ligament reconstruction: patient height as an indicator of appropriate graft length. Am J Sports Med. 2007;35:986–989.
Fineberg MS, Zarins B, Sherman OH. Practical considerations in anterior cruciate ligament replacement surgery. Arthroscopy. 2000;16:715–724.
Denti M, Bigoni M, Randelli P, et al. Graft-tunnel mismatch in endoscopic anterior cruciate ligament reconstruction. Intraoperative and cadaver measurement of the intra-articular graft length and the length of the patellar tendon. Knee Surg Sports Traumatol Arthrosc. 1998;6:165–168.
Taylor DE, Dervin GF, Keene GC. Femoral bone plug recession in endoscopic anterior cruciate ligament reconstruction. Arthroscopy. 1996;12:513–515.
Pomeroy G, Baltz M, Pierz K, et al. The effects of bone plug length and screw diameter on the holding strength of bone-tendon-bone grafts. Arthroscopy. 1998;14:148–152.
Verma N, Noerdlinger MA, Hallab N, et al. Effects of graft rotation on initial biomechanical failure characteristics of bone-patellar tendon-bone constructs. Am J Sports Med. 2003;31:708–713.
Gerich TG, Cassim A, Lattermann C, et al. Pullout strength of tibial graft fixation in anterior cruciate ligament replacement with a patellar tendon graft: interference screw versus staple fixation in human knees. Knee Surg Sports Traumatol Arthrosc. 1997;5:84–88.
Burd T, Conroy BP, Meyer SC, et al. The effects of chlorhexidine irrigation solution on contaminated bone-tendon allografts. Am J Sports Med. 2000;28:241–244.
Barbier O, Danis J, Versier G, et al. When the tendon autograft is dropped accidently on the floor: a study about bacterial contamination and antiseptic efficacy. Knee. 2015;22:380–383.
Chae S-W, Kang J-Y, Lee J, et al. Effect of structural design on the pullout strength of suture anchors for rotator cuff repair. J Orthop Res. 2018;36:3318–3327.
Nawab A, Kocabey Y, Caborn D, et al. Salvage rotator cuff repair using a biotenodesis screw. Arthroscopy. 2005;21:122–124.
Giori NJ, Sohn DH, Mirza FM, et al. Bone cement improves suture anchor fixation. Clin Orthop. 2006;451:236–241.
Galland A, Airaudi S, Gravier R, et al. Pullout strength of all suture anchors in the repair of rotator cuff tears: a biomechanical study. Int Orthop. 2013;37:2017–2023.
Heckman DS, Creighton RA, Romeo AA. Management of failed biceps tenodesis or tenotomy: Causation and treatment. Sports Med Arthrosc Rev. 2010;18:173–180.
Checchia SL, Doneux PS, Miyazaki AN, et al. Biceps tenodesis associated with arthroscopic repair of rotator cuff tears. J Shoulder Elbow Surg. 2005;14:138–144.
Mazzocca AD, Cote MP, Arciero CL, et al. Clinical outcomes after subpectoral biceps tenodesis with an interference screw. Am J Sports Med. 2008;36:1922–1929.
Boileau P, Krishnan SG, Coste J-S, et al. Arthroscopic biceps tenodesis: a new technique using bioabsorbable interference screw fixation. Arthroscopy. 2002;18:1002–1012.
Slenker NR, Lawson K, Ciccotti MG, et al. Biceps tenotomy versus tenodesis: clinical outcomes. Arthroscopy. 2012;28:576–582.
Gregory JM, Harwood DP, Gochanour E, et al. Clinical outcomes of revision biceps tenodesis. Int J Shoulder Surg. 2012;6:45–50.
Longo UG, Loppini M, Rizzello G, et al. Latarjet, Bristow, and Eden-Hybinette procedures for anterior shoulder dislocation: systematic review and quantitative synthesis of the literature. Arthroscopy. 2014;30:1184–1211.
Frank RM, Gregory B, O’Brien M, et al. Ninety-day complications following the Latarjet procedure. J Shoulder Elbow Surg. 2019;28:88–94.
Walch G, Agostini JY, Levigne C, et al. Recurrent anterior and multidirectional instability of the shoulder. Rev Chir Orthop Reparatrice Appar Mot. 1995;81:682–690.
Montgomery SR, Katthagen JC, Mikula JD, et al. Anatomic and biomechanical comparison of the classic and congruent-arc techniques of the Latarjet procedure. Am J Sports Med. 2017;45:1252–1260.
Domos P, Lunini E, Walch G. Contraindications and complications of the Latarjet procedure. Shoulder Elbow. 2018;10:15–24.
Smucny M, Miniaci A. A new option for glenoid reconstruction in recurrent anterior shoulder instability. Am J Orthop (Belle Mead NJ). 2017;46:199–202.
Douoguih WA, Goodwin D, Churchill R, et al. Conjoined tendon transfer for traumatic anterior glenohumeral instability in patients with large bony defects and anterior capsulolabral deficiency. Arthroscopy. 2018;34:12–20.
تواريخ الأحداث: Date Created: 20220203 Date Completed: 20220207 Latest Revision: 20220207
رمز التحديث: 20231215
DOI: 10.1097/JSA.0000000000000315
PMID: 35113842
قاعدة البيانات: MEDLINE
الوصف
تدمد:1538-1951
DOI:10.1097/JSA.0000000000000315