دورية أكاديمية

Emerging Trends in Mesenchymal Stem Cells Applications for Cardiac Regenerative Therapy: Current Status and Advances.

التفاصيل البيبلوغرافية
العنوان: Emerging Trends in Mesenchymal Stem Cells Applications for Cardiac Regenerative Therapy: Current Status and Advances.
المؤلفون: Sharma A; Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India., Gupta S; Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India., Archana S; Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India., Verma RS; Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India. vermars@iitm.ac.in.
المصدر: Stem cell reviews and reports [Stem Cell Rev Rep] 2022 Jun; Vol. 18 (5), pp. 1546-1602. Date of Electronic Publication: 2022 Feb 04.
نوع المنشور: Journal Article; Review; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Science+Business Media Country of Publication: United States NLM ID: 101752767 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2629-3277 (Electronic) Linking ISSN: 26293277 NLM ISO Abbreviation: Stem Cell Rev Rep Subsets: MEDLINE
أسماء مطبوعة: Publication: 2011- : [New York, NY] : Springer Science+Business Media
Original Publication: [Totowa, N.J.] : Humana Press, [2009]-
مواضيع طبية MeSH: Mesenchymal Stem Cell Transplantation* , Mesenchymal Stem Cells* , Myocardial Infarction*/therapy, Humans ; Myocytes, Cardiac ; Regenerative Medicine
مستخلص: Irreversible myocardium infarction is one of the leading causes of cardiovascular disease (CVD) related death and its quantum is expected to grow in coming years. Pharmacological intervention has been at the forefront to ameliorate injury-related morbidity and mortality. However, its outcomes are highly skewed. As an alternative, stem cell-based tissue engineering/regenerative medicine has been explored quite extensively to regenerate the damaged myocardium. The therapeutic modality that has been most widely studied both preclinically and clinically is based on adult multipotent mesenchymal stem cells (MSC) delivered to the injured heart. However, there is debate over the mechanistic therapeutic role of MSC in generating functional beating cardiomyocytes. This review intends to emphasize the role and use of MSC in cardiac regenerative therapy (CRT). We have elucidated in detail, the various aspects related to the history and progress of MSC use in cardiac tissue engineering and its multiple strategies to drive cardiomyogenesis. We have further discussed with a focus on the various therapeutic mechanism uncovered in recent times that has a significant role in ameliorating heart-related problems. We reviewed recent and advanced technologies using MSC to develop/create tissue construct for use in cardiac regenerative therapy. Finally, we have provided the latest update on the usage of MSC in clinical trials and discussed the outcome of such studies in realizing the full potential of MSC use in clinical management of cardiac injury as a cellular therapy module.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: G.A. Roth, M.D. Huffman, A.E. Moran, V. Feigin, G.A. Mensah, M. Naghavi, C.J.L. Murray, Global and regional patterns in cardiovascular mortality from 1990 to 2013, Circulation. 132 (2015) 1667–1678. https://doi.org/10.1161/CIRCULATIONAHA.114.008720 .
Prabhakaran, D., Jeemon, P., & Roy, A. (2016). Cardiovascular diseases in india: current epidemiology and future directions. Circulation, 133, 1605–1620. https://doi.org/10.1161/CIRCULATIONAHA.114.008729. (PMID: 10.1161/CIRCULATIONAHA.114.00872927142605)
E.J. Benjamin, M.J. Blaha, S.E. Chiuve, M. Cushman, S.R. Das, R. Deo, S.D. De Ferranti, J. Floyd, M. Fornage, C. Gillespie, C.R. Isasi, M.C. Jim’nez, L.C. Jordan, S.E. Judd, D. Lackland, J.H. Lichtman, L. Lisabeth, S. Liu, C.T. Longenecker, R.H. MacKey, K. Matsushita, D. Mozaffarian, M.E. Mussolino, K. Nasir, R.W. Neumar, L. Palaniappan, D.K. Pandey, R.R. Thiagarajan, M.J. Reeves, M. Ritchey, C.J. Rodriguez, G.A. Roth, W.D. Rosamond, C. Sasson, A. Towfghi, C.W. Tsao, M.B. Turner, S.S. Virani, J.H. Voeks, J.Z. Willey, J.T. Wilkins, J.H. Wu, H.M. Alger, S.S. Wong, P. Muntner, Heart Disease and Stroke Statistics’2017 Update: A Report from the American Heart Association, Circulation. 135 (2017) e146–e603. https://doi.org/10.1161/CIR.0000000000000485 .
A. Timmis, N. Townsend, C. Gale, R. Grobbee, N. Maniadakis, M. Flather, E. Wilkins, L. Wright, R. Vos, J. Bax, M. Blum, F. Pinto, P. Vardas, European Society of Cardiology: Cardiovascular disease statistics 2017, Eur. Heart J. 39 (2018) 508–577. https://doi.org/10.1093/eurheartj/ehx628 .
Feric, N. T., & Radisic, M. (2016). Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Advanced Drug Delivery Reviews, 96, 110–134. https://doi.org/10.1016/j.addr.2015.04.019. (PMID: 10.1016/j.addr.2015.04.01925956564)
Gupta, S., Sharma, A., & Verma, R. S. (2020). Polymers in biosensor devices for cardiovascular applications. Curr. Opin. Biomed. Eng. https://doi.org/10.1016/j.cobme.2019.10.002. (PMID: 10.1016/j.cobme.2019.10.002)
Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., & Radisic, M. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16, 169–187. https://doi.org/10.1089/ten.teb.2009.0352. (PMID: 10.1089/ten.teb.2009.035219698068)
Bulluck, H., Yellon, D. M., & Hausenloy, D. J. (2016). Reducing myocardial infarct size: Challenges and future opportunities. Heart, 102, 341–348. https://doi.org/10.1136/heartjnl-2015-307855. (PMID: 10.1136/heartjnl-2015-30785526674987)
Cahill, T. J., Choudhury, R. P., & Riley, P. R. (2017). Heart regeneration and repair after myocardial infarction: Translational opportunities for novel therapeutics. Nature Reviews. Drug Discovery, 16, 699–717. https://doi.org/10.1038/nrd.2017.106. (PMID: 10.1038/nrd.2017.10628729726)
Steinhauser, M. L., & Lee, R. T. (2011). Regeneration of the heart. EMBO Molecular Medicine, 3, 701–712. https://doi.org/10.1002/emmm.201100175. (PMID: 10.1002/emmm.201100175220957363377117)
P. Hernigou, Bone transplantation and tissue engineering, part IV. Mesenchymal stem cells: history in orthopedic surgery from Cohnheim and Goujon to the Nobel Prize of Yamanaka, Int. Orthop. 2015 394. 39 (2015) 807–817. https://doi.org/10.1007/S00264-015-2716-8 .
Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). THE DEVELOPMENT OF FIBROBLAST COLONIES IN MONOLAYER CULTURES OF GUINEA-PIG BONE MARROW AND SPLEEN CELLS. Cell Proliferation, 3, 393–403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.x. (PMID: 10.1111/j.1365-2184.1970.tb00347.x)
A. Biochem, E./ Biotechnol, J.W. Kuhbier, B. Weyand, C. Radtke, P.M. Vogt, C. Kasper, K. Reimers, Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells, (n.d.). https://doi.org/10.1007/10_2009_24 .
Noiseux, N., Gnecchi, M., Lopez-Ilasaca, M., Zhang, L., Solomon, S. D., Deb, A., Dzau, V. J., & Pratt, R. E. (2006). Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy, 14, 840–850. https://doi.org/10.1016/j.ymthe.2006.05.016. (PMID: 10.1016/j.ymthe.2006.05.01616965940)
Z. X, B. H, C. CY, Y. L, F. D, H. BS, C. B, E. E, Electrospun fine-textured scaffolds for heart tissue constructs, Biomaterials. 26 (2005) 5330–5338. https://doi.org/10.1016/J.BIOMATERIALS.2005.01.052 .
Z. WH, M. I, W. G, D. M, N. H, N. U, H. A, B. L, B. K, M. B, D. S, S. A, E. H, E. T, Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts, Nat. Med. 12 (2006) 452–458. https://doi.org/10.1038/NM1394 .
G. J, L. GS, B. CY, H. ZM, H. MY, Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction, Inflammation. 30 (2007) 97–104. https://doi.org/10.1007/S10753-007-9025-3 .
R. Mazhari, J.M. Hare, Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche, Nat. Clin. Pract. Cardiovasc. Med. 2007 41. 4 (2007) S21–S26. https://doi.org/10.1038/ncpcardio0770 .
Mc, Y., Ss, W., Nk, C., Nh, C., Yy, H., Yl, C., Mj, S., & Tw, C. (2009). The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro. Biomaterials, 30, 3757–3765. https://doi.org/10.1016/J.BIOMATERIALS.2009.03.057. (PMID: 10.1016/J.BIOMATERIALS.2009.03.057)
G. D, L. X, L. L, W. J, T. Q, S. Y, C. H, Chemical and physical stimuli induce cardiomyocyte differentiation from stem cells, Biochem. Biophys. Res. Commun. 381 (2009) 317–321. https://doi.org/10.1016/J.BBRC.2009.01.173 .
G. R, M. N, L. J, G. J, K. L, K. C, G. M, T. A, W. W, M. P, W. F, C. B, L. W, S. G, Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration, Biomaterials. 32 (2011) 9218–9230. https://doi.org/10.1016/J.BIOMATERIALS.2011.08.071 .
Mooney, E., Mackle, J. N., Blond, D. J. P., O’Cearbhaill, E., Shaw, G., Blau, W. J., Barry, F. P., Barron, V., & Murphy, J. M. (2012). The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials, 33, 6132–6139. https://doi.org/10.1016/j.biomaterials.2012.05.032. (PMID: 10.1016/j.biomaterials.2012.05.03222681974)
Ai, C. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9, 641–650. https://doi.org/10.1002/JOR.1100090504. (PMID: 10.1002/JOR.1100090504)
Liu, C., Fan, Y., Zhou, L., Zhu, H. Y., Song, Y. C., Hu, L., Wang, Y., & Li, Q. P. (2015). Pretreatment of mesenchymal stem cells with angiotensin II enhances paracrine effects, angiogenesis, gap junction formation and therapeutic efficacy for myocardial infarction. International Journal of Cardiology, 188, 22–32. https://doi.org/10.1016/j.ijcard.2015.03.425. (PMID: 10.1016/j.ijcard.2015.03.42525880576)
Mayourian, J., Savizky, R. M., Sobie, E. A., & Costa, K. D. (2016). Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes. PLoS Computational Biology, 12, e1005014. https://doi.org/10.1371/JOURNAL.PCBI.1005014. (PMID: 10.1371/JOURNAL.PCBI.1005014274548124959759)
W. S, S. T, C. AI, Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine, Muscle Nerve. 18 (1995) 1417–1426. https://doi.org/10.1002/MUS.880181212 .
Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., Sano, M., Takahashi, T., Hori, S., Abe, H., Hata, J. I., Umezawa, A., & Ogawa, S. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. The Journal of Clinical Investigation, 103, 697–705. https://doi.org/10.1172/JCI5298. (PMID: 10.1172/JCI529810074487408125)
F. S, B. R, Z. YF, S. M, P. A, T. FO, W. NJ, L. MB, E. SE, K. R, Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia, J. Am. Coll. Cardiol. 37 (2001) 1726–1732. https://doi.org/10.1016/S0735-1097(01)01200-1 .
Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98. https://doi.org/10.1161/hc0102.101442. (PMID: 10.1161/hc0102.10144211772882)
S. JG, G. PJ, B. WA, S. G, M. J, R. JM, P. MF, M. BJ, Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects, Ann. Thorac. Surg. 73 (2002) 1919–1926. https://doi.org/10.1016/S0003-4975(02)03517-8 .
R. S, E. JW, W. AS, K. JY, Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype, J. Thorac. Cardiovasc. Surg. 126 (2003) 124–132. https://doi.org/10.1016/S0022-5223(03)00074-6 .
K. M, W. Y, W. MA, X. M, A. A, A. M, Implantation of bone marrow stem cells reduces the infarction and fibrosis in ischemic mouse heart, J. Mol. Cell. Cardiol. 35 (2003) 1113–1119. https://doi.org/10.1016/S0022-2828(03)00211-6 .
M. Cui, Z. Wang, R. Bassel-Duby, E.N. Olson, Genetic and epigenetic regulation of cardiomyocytes in development, regeneration and disease, Dev. 145 (2018). https://doi.org/10.1242/dev.171983 .
Wamstad, J. A., Alexander, J. M., Truty, R. M., Shrikumar, A., Li, F., Eilertson, K. E., Ding, H., Wylie, J. N., Pico, A. R., Capra, J. A., Erwin, G., Kattman, S. J., Keller, G. M., Srivastava, D., Levine, S. S., Pollard, K. S., Holloway, A. K., Boyer, L. A., & Bruneau, B. G. (2012). Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell, 151, 206–220. https://doi.org/10.1016/j.cell.2012.07.035. (PMID: 10.1016/j.cell.2012.07.035229816923462286)
K. Oyama, D. El-Nachef, Y. Zhang, P. Sdek, W.R. MacLellan, Epigenetic regulation of cardiac myocyte differentiation, Front. Genet. 5 (2014). https://doi.org/10.3389/fgene.2014.00375 .
Perez-Campo, F., & Riancho, J. (2015). Epigenetic Mechanisms Regulating Mesenchymal Stem Cell Differentiation. Current Genomics, 16, 368–383. https://doi.org/10.2174/1389202916666150817202559. (PMID: 10.2174/1389202916666150817202559270196124765524)
Burlacu, A. (2006). Can 5-azacytidine convert the adult stem cells into cardiomyocytes? A brief overview. Archives of Physiology and Biochemistry, 112, 260–264. https://doi.org/10.1080/13813450601094631. (PMID: 10.1080/1381345060109463117178600)
Govarthanan, K., Gupta, P. K., Ramasamy, D., Kumar, P., Mahadevan, S., & Verma, R. S. (2020). DNA methylation microarray uncovers a permissive methylome for cardiomyocyte differentiation in human mesenchymal stem cells. Genomics, 112, 1384–1395. https://doi.org/10.1016/j.ygeno.2019.08.007. (PMID: 10.1016/j.ygeno.2019.08.00731415810)
B.W. Park, S.H. Jung, S. Das, S.M. Lee, J.H. Park, H. Kim, J.W. Hwang, S. Lee, H.J. Kim, H.Y. Kim, S. Jung, D.W. Cho, J. Jang, K. Ban, H.J. Park, In vivo priming of human mesenchymal stem cells with hepatocyte growth factor–engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair, Sci. Adv. 6 (2020). https://doi.org/10.1126/sciadv.aay6994 .
Govarthanan, K., Vidyasekar, P., Gupta, P. K., Lenka, N., & Verma, R. S. (2020). Glycogen synthase kinase 3β inhibitor- CHIR 99021 augments the differentiation potential of mesenchymal stem cells. Cytotherapy, 22, 91–105. https://doi.org/10.1016/j.jcyt.2019.12.007. (PMID: 10.1016/j.jcyt.2019.12.00731980369)
P. Sreejit, R.S. Verma, Cardiogel supports adhesion, proliferation and differentiation of stem cells with increased oxidative stress protection, Eur. Cells Mater. 21 (2011) 107–121. https://doi.org/10.22203/eCM.v021a09 .
S. Gupta, A. Sharma, A. S, R.S. Verma, Mesenchymal Stem Cells for Cardiac Regeneration: from Differentiation to Cell Delivery, Stem Cell Rev. Reports 2021 175. 17 (2021) 1666–1694. https://doi.org/10.1007/S12015-021-10168-0 .
H. Shen, Y. Wang, Z. Zhang, J. Yang, S. Hu, Z. Shen, Mesenchymal Stem Cells for Cardiac Regenerative Therapy: Optimization of Cell Differentiation Strategy, Stem Cells Int. 2015 (2015). https://doi.org/10.1155/2015/524756 .
Kuraitis, D., Ruel, M., & Suuronen, E. J. (2011). Mesenchymal stem cells for cardiovascular regeneration. Cardiovascular Drugs and Therapy, 25, 349–362. https://doi.org/10.1007/s10557-011-6311-y. (PMID: 10.1007/s10557-011-6311-y21637968)
R.S. Verma, Recent Advances in Induced Pluripotent Stem Cell (iPSC) based Therapeutics, J. Stem Cell Res. Ther. 3 (2017). https://doi.org/10.15406/jsrt.2017.03.00100 .
X. Guo, Y. Bai, L. Zhang, B. Zhang, N. Zagidullin, K. Carvalho, Z. Du, B. Cai, Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: New regulators and its implications, Stem Cell Res. Ther. 9 (2018). https://doi.org/10.1186/s13287-018-0773-9 .
Y. Guo, Y. Yu, S. Hu, Y. Chen, Z. Shen, The therapeutic potential of mesenchymal stem cells for cardiovascular diseases, Cell Death Dis. 11 (2020). https://doi.org/10.1038/s41419-020-2542-9 .
L.C. Liew, B.X. Ho, B.S. Soh, Mending a broken heart: Current strategies and limitations of cell-based therapy, Stem Cell Res. Ther. 11 (2020). https://doi.org/10.1186/s13287-020-01648-0 .
Song, H., Chang, W., Song, B. W., & Hwang, K. C. (2012). Specific differentiation of mesenchymal stem cells by small molecules. Am. J. Stem Cells., 1, 22–30. (PMID: 23671794)
B. Huang, G. Li, X.H. Jiang, Fate determination in mesenchymal stem cells: A perspective from histone-modifying enzymes, Stem Cell Res. Ther. 6 (2015). https://doi.org/10.1186/s13287-015-0018-0 .
R. Santhakumar, P. Vidyasekar, R.S. Verma, Cardiogel: A nano-matrix scaffold with potential application in cardiac regeneration using mesenchymal stem cells, PLoS One. 9 (2014). https://doi.org/10.1371/journal.pone.0114697 .
X. Shen, B. Pan, H. Zhou, L. Liu, T. Lv, J. Zhu, X. Huang, J. Tian, Differentiation of mesenchymal stem cells into cardiomyocytes is regulated by miRNA-1–2 via WNT signaling pathway, J. Biomed. Sci. 24 (2017). https://doi.org/10.1186/s12929-017-0337-9 .
Cai, B., Li, J., Wang, J., Luo, X., Ai, J., Liu, Y., Wang, N., Liang, H., Zhang, M., Chen, N., Wang, G., Xing, S., Zhou, X., Yang, B., Wang, X., & Lu, Y. (2012). MicroRNA-124 regulates cardiomyocyte differentiation of bone marrow-derived mesenchymal stem cells via targeting STAT3 signaling. Stem Cells., 30, 1746–1755. https://doi.org/10.1002/stem.1154. (PMID: 10.1002/stem.115422696253)
Ng, W. H., Ramasamy, R., Yong, Y. K., Ngalim, S. H., Lim, V., Shaharuddin, B., & Tan, J. J. (2019). Extracellular matrix from decellularized mesenchymal stem cells improves cardiac gene expressions and oxidative resistance in cardiac C-kit cells. Regen. Ther., 11, 8–16. https://doi.org/10.1016/j.reth.2019.03.006. (PMID: 10.1016/j.reth.2019.03.006311931426517795)
Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., & Taylor, D. A. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14, 213–221. https://doi.org/10.1038/nm1684. (PMID: 10.1038/nm168418193059)
Akbay, E., & Onur, M. A. (2019). Investigation of survival and migration potential of differentiated cardiomyocytes transplanted with decellularized heart scaffold. J. Biomed. Mater. Res. - Part A., 107, 561–570. https://doi.org/10.1002/jbm.a.36572. (PMID: 10.1002/jbm.a.36572)
C. Tong, C. Li, B. Xie, M. Li, X. Li, Z. Qi, J. Xia, Generation of bioartificial hearts using decellularized scaffolds and mixed cells, Biomed. Eng. Online. 18 (2019). https://doi.org/10.1186/s12938-019-0691-9 .
M. Shah, P. Kc, K.M. Copeland, J. Liao, G. Zhang, A Thin Layer of Decellularized Porcine Myocardium for Cell Delivery, Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-018-33946-2 .
R. Bai, L. Tian, Y. Li, J. Zhang, Y. Wei, Z. Jin, Z. Liu, H. Liu, Combining ECM Hydrogels of Cardiac Bioactivity with Stem Cells of High Cardiomyogenic Potential for Myocardial Repair, Stem Cells Int. 2019 (2019). https://doi.org/10.1155/2019/6708435 .
Reis, L. A., Chiu, L. L. Y., Feric, N., Fu, L., & Radisic, M. (2016). Biomaterials in myocardial tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 10, 11–28. https://doi.org/10.1002/term.1944. (PMID: 10.1002/term.194425066525)
Nasr, S. M., Rabiee, N., Hajebi, S., Ahmadi, S., Fatahi, Y., Hosseini, M., Bagherzadeh, M., Ghadiri, A. M., Rabiee, M., Jajarmi, V., & Webster, T. J. (2020). Biodegradable nanopolymers in cardiac tissue engineering: From concept towards nanomedicine. International Journal of Nanomedicine, 15, 4205–4224. https://doi.org/10.2147/IJN.S245936. (PMID: 10.2147/IJN.S245936)
Pascual-Gil, S., Garbayo, E., Díaz-Herráez, P., Prosper, F., & Blanco-Prieto, M. J. (2015). Heart regeneration after myocardial infarction using synthetic biomaterials. Journal of Controlled Release, 203, 23–38. https://doi.org/10.1016/j.jconrel.2015.02.009. (PMID: 10.1016/j.jconrel.2015.02.00925665866)
Kang, P. L., Chen, C. H., Chen, S. Y., Wu, Y. J., Lin, C. Y., Lin, F. H., & Kuo, S. M. (2013). Nano-sized collagen i molecules enhanced the differentiation of rat mesenchymal stem cells into cardiomyocytes. J. Biomed. Mater. Res. - Part A., 101, 2808–2816. https://doi.org/10.1002/jbm.a.34589. (PMID: 10.1002/jbm.a.34589)
Lin, Y. L., Chen, C. P., Lo, C. M., & Wang, H. S. (2016). Stiffness-controlled three-dimensional collagen scaffolds for differentiation of human Wharton’s jelly mesenchymal stem cells into cardiac progenitor cells. J. Biomed. Mater. Res. - Part A., 104, 2234–2242. https://doi.org/10.1002/jbm.a.35762. (PMID: 10.1002/jbm.a.35762)
Wang, H., Shi, J., Wang, Y., Yin, Y., Wang, L., Liu, J., Liu, Z., Duan, C., Zhu, P., & Wang, C. (2014). Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Biomaterials, 35, 3986–3998. https://doi.org/10.1016/j.biomaterials.2014.01.021. (PMID: 10.1016/j.biomaterials.2014.01.02124508080)
Liu, B. H., Yeh, H. Y., Lin, Y. C., Wang, M. H., Chen, D. C., Lee, B. H., & Hsu, S. H. (2013). Spheroid formation and enhanced cardiomyogenic potential of adipose-derived stem cells grown on chitosan, Biores. Open. Access, 2, 28–39. https://doi.org/10.1089/biores.2012.0285. (PMID: 10.1089/biores.2012.0285)
Lee, W. C., Lim, C. H. Y. X., Shi, H., Tang, L. A. L., Wang, Y., Lim, C. T., & Loh, K. P. (2011). Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano, 5, 7334–7341. https://doi.org/10.1021/nn202190c. (PMID: 10.1021/nn202190c21793541)
Park, J., Park, S., Ryu, S., Bhang, S. H., Kim, J., Yoon, J. K., Park, Y. H., Cho, S. P., Lee, S., Hong, B. H., & Kim, B. S. (2014). Graphene-regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv. Healthc. Mater., 3, 176–181. https://doi.org/10.1002/adhm.201300177. (PMID: 10.1002/adhm.20130017723949999)
Park, J., Kim, Y. S., Ryu, S., Kang, W. S., Park, S., Han, J., Jeong, H. C., Hong, B. H., Ahn, Y., & Kim, B. S. (2015). Graphene potentiates the myocardial repair efficacy of mesenchymal stem cells by stimulating the expression of angiogenic growth factors and gap junction protein. Advanced Functional Materials, 25, 2590–2600. https://doi.org/10.1002/adfm.201500365. (PMID: 10.1002/adfm.201500365)
Seo, H. R., Joo, H. J., Kim, D. H., Cui, L. H., Choi, S. C., Kim, J. H., Cho, S. W., Lee, K. B., & Lim, D. S. (2017). Nanopillar Surface Topology Promotes Cardiomyocyte Differentiation through Cofilin-Mediated Cytoskeleton Rearrangement. ACS Applied Materials & Interfaces, 9, 16803–16812. https://doi.org/10.1021/acsami.7b01555. (PMID: 10.1021/acsami.7b01555)
Y. Huang, L. Zheng, X. Gong, X. Jia, W. Song, M. Liu, Y. Fan, Effect of cyclic strain on cardiomyogenic differentiation of rat bone marrow derived mesenchymal stem cells, PLoS One. 7 (2012). https://doi.org/10.1371/journal.pone.0034960 .
Huang, J., Chen, Y., Tang, C., Fei, Y., Wu, H., Ruan, D., Paul, M. E., Chen, X., Yin, Z., Heng, B. C., Chen, W., & Shen, W. (2019). The relationship between substrate topography and stem cell differentiation in the musculoskeletal system. Cellular and Molecular Life Sciences, 76, 505–521. https://doi.org/10.1007/s00018-018-2945-2. (PMID: 10.1007/s00018-018-2945-230390116)
N. Thavandiran, S.S. Nunes, Y. Xiao, M. Radisic, Topological and electrical control of cardiac differentiation and assembly, Stem Cell Res. Ther. 4 (2013). https://doi.org/10.1186/scrt162 .
K. Henderson, A.D. Sligar, V.P. Le, J. Lee, A.B. Baker, Biomechanical Regulation of Mesenchymal Stem Cells for Cardiovascular Tissue Engineering, Adv. Healthc. Mater. 6 (2017). https://doi.org/10.1002/adhm.201700556 .
R.J. McMurray, A.K.T. Wann, C.L. Thompson, J.T. Connelly, M.M. Knight, Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells, Sci. Rep. 3 (2013). https://doi.org/10.1038/srep03545 .
Tummala, P., Arnsdorf, E. J., & Jacobs, C. R. (2010). The role of primary cilia in mesenchymal stem cell differentiation: A pivotal switch in guiding lineage commitment. Cellular and Molecular Bioengineering, 3, 207–212. https://doi.org/10.1007/s12195-010-0127-x. (PMID: 10.1007/s12195-010-0127-x20823950)
Joshi, J., Brennan, D., Beachley, V., & Kothapalli, C. R. (2018). Cardiomyogenic differentiation of human bone marrow-derived mesenchymal stem cell spheroids within electrospun collagen nanofiber mats. J. Biomed. Mater. Res. - Part A., 106, 3303–3312. https://doi.org/10.1002/jbm.a.36530. (PMID: 10.1002/jbm.a.36530)
Yamada, K., Green, K. G., Samarel, A. M., & Saffitz, J. E. (2005). Distinct pathways regulate expression of cardiac electrical and mechanical junction proteins in response to stretch. Circulation Research, 97, 346–353. https://doi.org/10.1161/01.RES.0000178788.76568.8a. (PMID: 10.1161/01.RES.0000178788.76568.8a16037569)
Maul, T. M., Chew, D. W., Nieponice, A., & Vorp, D. A. (2011). Mechanical stimuli differentially control stem cell behavior: Morphology, proliferation, and differentiation. Biomechanics and Modeling in Mechanobiology, 10, 939–953. https://doi.org/10.1007/s10237-010-0285-8. (PMID: 10.1007/s10237-010-0285-8212538093208754)
Jacot, J. G., Martin, J. C., & Hunt, D. L. (2010). Mechanobiology of cardiomyocyte development. Journal of Biomechanics, 43, 93–98. https://doi.org/10.1016/j.jbiomech.2009.09.014. (PMID: 10.1016/j.jbiomech.2009.09.01419819458)
Guan, J., Wang, F., Li, Z., Chen, J., Guo, X., Liao, J., & Moldovan, N. I. (2011). The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials, 32, 5568–5580. https://doi.org/10.1016/j.biomaterials.2011.04.038. (PMID: 10.1016/j.biomaterials.2011.04.038215701134141541)
B. Wang, G. Wang, F. To, J.R. Butler, A. Claude, R.M. McLaughlin, L.N. Williams, A.L. De Jongh Curry, J. Liao, Myocardial scaffold-based cardiac tissue engineering: Application of coordinated mechanical and electrical stimulations, Langmuir. 29 (2013) 11109–11117. https://doi.org/10.1021/la401702w .
R.S.R.M. Martherus, S.J.V. Vanherle, E.D.J. Timmer, V.A. Zeijlemaker, J.L. Broers, H.J. Smeets, J.P. Geraedts, T.A.Y. Ayoubi, Electrical signals affect the cardiomyocyte transcriptome independently of contraction, Physiol. Genomics. 42 A (2010) 283–289. https://doi.org/10.1152/physiolgenomics.00182.2009 .
A. Orza, O. Soritau, L. Olenic, M. Diudea, A. Florea, D. Rus Ciuca, C. Mihu, D. Casciano, A.S. Biris, Electrically conductive gold-coated collagen nanofibers for placental-derived mesenchymal stem cells enhanced differentiation and proliferation, ACS Nano. 5 (2011) 4490–4503. https://doi.org/10.1021/nn1035312 .
Caplan, A. I. (2017). Mesenchymal stem cells: Time to change the name! Stem Cells Translational Medicine, 6, 1445–1451. https://doi.org/10.1002/sctm.17-0051. (PMID: 10.1002/sctm.17-0051284522045689741)
Caplan, A. I. (2019). Medicinal signalling cells: They work, so use them. Nature, 566, 39. https://doi.org/10.1038/D41586-019-00490-6. (PMID: 10.1038/D41586-019-00490-630723355)
S.T. Ji, H. Kim, J. Yun, J.S. Chung, S.M. Kwon, Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering, Stem Cells Int. 2017 (2017). https://doi.org/10.1155/2017/3945403 .
Cho, H. M., Kim, P. H., Chang, H. K., Shen, Y. M., Bonsra, K., Kang, B. J., Yum, S. Y., Kim, J. H., Lee, S. Y., Choi, M. C., Kim, H. H., Jang, G., & Cho, J. Y. (2017). Targeted genome engineering to control VEGF expression in human umbilical cord blood-derived mesenchymal stem cells: Potential implications for the treatment of myocardial infarction. Stem Cells Translational Medicine, 6, 1040–1051. https://doi.org/10.1002/sctm.16-0114. (PMID: 10.1002/sctm.16-0114281866925442764)
Shibuya, M. (2013). Vascular endothelial growth factor and its receptor system: Physiological functions in angiogenesis and pathological roles in various diseases. Journal of Biochemistry, 153, 13–19. https://doi.org/10.1093/jb/mvs136. (PMID: 10.1093/jb/mvs13623172303)
Wang, S., Mo, M., Wang, J., Sadia, S., Shi, B., Fu, X., Yu, L., Tredget, E. E., & Wu, Y. (2018). Platelet-derived growth factor receptor beta identifies mesenchymal stem cells with enhanced engraftment to tissue injury and pro-angiogenic property. Cellular and Molecular Life Sciences, 75, 547–561. https://doi.org/10.1007/s00018-017-2641-7. (PMID: 10.1007/s00018-017-2641-728929173)
Cheng, M., Huang, K., Zhou, J., Yan, D., Tang, Y. L., Zhao, T. C., Miller, R. J., Kishore, R., Losordo, D. W., & Qin, G. (2015). A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart. Journal of Molecular and Cellular Cardiology, 81, 49–53. https://doi.org/10.1016/j.yjmcc.2015.01.024. (PMID: 10.1016/j.yjmcc.2015.01.024256559344380859)
G. Gómez-Mauricio, I. Moscoso, M.F. Martín-Cancho, V. Crisóstomo, C. Prat-Vidal, C. Báez-Díaz, F.M. Sánchez-Margallo, A. Bernad, Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model, Stem Cell Res. Ther. 7 (2016). https://doi.org/10.1186/s13287-016-0350-z .
C. Lo Sicco, D. Reverberi, C. Balbi, V. Ulivi, E. Principi, L. Pascucci, P. Becherini, M.C. Bosco, L. Varesio, C. Franzin, M. Pozzobon, R. Cancedda, R. Tasso, Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: Endorsement of macrophage polarization, Stem Cells Transl. Med. 6 (2017) 1018–1028. https://doi.org/10.1002/sctm.16-0363 .
Liu, L., Jin, X., Hu, C. F., Li, R., Zhou, Z., & Shen, C. X. (2017). Exosomes Derived from Mesenchymal Stem Cells Rescue Myocardial Ischaemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy Via AMPK and Akt Pathways. Cellular Physiology and Biochemistry, 43, 52–68. https://doi.org/10.1159/000480317. (PMID: 10.1159/00048031728848091)
Mao, Q., Lin, C. X., Liang, X. L., Gao, J. S., & Xu, B. (2013). Mesenchymal stem cells overexpressing integrin-linked kinase attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. Molecular Medicine Reports, 7, 1617–1623. https://doi.org/10.3892/mmr.2013.1348. (PMID: 10.3892/mmr.2013.134823450431)
Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., Hu, Q., Feigenbaum, G. S., Margitich, I. S., Mazhari, R., Boyle, A. J., Zambrano, J. P., Rodriguez, J. E., Dulce, R., Pattany, P. M., Valdes, D., Revilla, C., Heldman, A. W., McNiece, I., & Hare, J. M. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107, 913–922. https://doi.org/10.1161/CIRCRESAHA.110.222703. (PMID: 10.1161/CIRCRESAHA.110.222703206712383408082)
Tan, Y., Nie, W., Chen, C., He, X., Xu, Y., Ma, X., Zhang, J., Tan, M., Rong, P., & Wang, W. (2019). Mesenchymal stem cells alleviate hypoxia-induced oxidative stress and enhance the pro-survival pathways in porcine islets. Experimental Biology and Medicine. https://doi.org/10.1177/1535370219844472. (PMID: 10.1177/1535370219844472310420756567589)
Sun, X. H., Wang, X., Zhang, Y., & Hui, J. (2019). Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway. Thrombosis Research, 177, 23–32. https://doi.org/10.1016/j.thromres.2019.02.002. (PMID: 10.1016/j.thromres.2019.02.00230844685)
M. Gong, B. Yu, J. Wang, Y. Wang, M. Liu, C. Paul, R.W. Millard, D.S. Xiao, M. Ashraf, M. Xu, Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis, Oncotarget. 8 (2017) 45200–45212. https://doi.org/10.18632/oncotarget.16778 .
Liang, X., Zhang, L., Wang, S., Han, Q., & Zhao, R. C. (2016). Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. Journal of Cell Science, 129, 2182–2189. https://doi.org/10.1242/jcs.170373. (PMID: 10.1242/jcs.17037327252357)
C. Merino-González, F.A. Zuñiga, C. Escudero, V. Ormazabal, C. Reyes, E. Nova-Lamperti, C. Salomón, C. Aguayo, Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: Potencial clinical application, Front. Physiol. 7 (2016). https://doi.org/10.3389/fphys.2016.00024 .
J. Sheu, F. Lee, C. Yuen, Y. Chen, … T.H.-I.J. of, U. 2015, Combined therapy with shock wave and autologous bone marrow-derived mesenchymal stem cells alleviates left ventricular dysfunction and remodeling through, Elsevier. 193 (2015) 69–83.
Lepidi, S. (2018). Commentary on “Efficient Differentiation of Bone Marrow Mesenchymal Stem Cells into Endothelial Cells in vitro.” European Journal of Vascular and Endovascular Surgery, 55, 266. https://doi.org/10.1016/j.ejvs.2017.11.017. (PMID: 10.1016/j.ejvs.2017.11.01729317114)
S. Shi, J. Sun, Q. Meng, Y. Yu, H. Huang, T. Ma, Z. Yang, X. Liu, J. Yang, Z. Shen, Sonic hedgehog promotes endothelial differentiation of bone marrow mesenchymal stem cells via VEGF-D, J. Thorac. Dis. 10 (2018) 5476–5488. https://doi.org/10.21037/jtd.2018.09.50 .
Lin, P., Correa, D., Kean, T. J., Awadallah, A., Dennis, J. E., & Caplan, A. I. (2014). Serial transplantation and long-term engraftment of intra-arterially delivered clonally derived mesenchymal stem cells to injured bone marrow. Molecular Therapy, 22, 160–168. https://doi.org/10.1038/mt.2013.221. (PMID: 10.1038/mt.2013.22124067545)
Keating, A. (2012). Mesenchymal stromal cells: New directions. Cell Stem Cell, 10, 709–716. https://doi.org/10.1016/j.stem.2012.05.015. (PMID: 10.1016/j.stem.2012.05.01522704511)
Wang, H. H., Meng, M. B., Wu, Z. Q., Guo, W. H., Jiang, B., Ying, G. G., Zhao, L. J., Yuan, Z. Y., & Wang, P. (2015). Mesenchymal Stem Cells Generate Pericytes to Promote Tumor Recurrence via Vasculogenesis After Stereotactic Body Radiation Therapy. Int. J. Radiat. Oncol., 93, E532. https://doi.org/10.1016/j.ijrobp.2015.07.1909. (PMID: 10.1016/j.ijrobp.2015.07.1909)
M. Loibl, A. Binder, M. Herrmann, F. Duttenhoefer, R.G. Richards, M. Nerlich, M. Alini, S. Verrier, Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro, Biomed Res. Int. 2014 (2014). https://doi.org/10.1155/2014/395781 .
D. Klein, P. Weißhardt, V. Kleff, H. Jastrow, H.G. Jakob, S. Ergün, Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation, PLoS One. 6 (2011). https://doi.org/10.1371/journal.pone.0020540 .
Gökçinar-Yagci, B., Uçkan-Çetinkaya, D., & Çelebi-Saltik, B. (2015). Pericytes: Properties, functions and applications in tissue engineering. Stem Cell Rev. Reports., 11, 549–559. https://doi.org/10.1007/s12015-015-9590-z. (PMID: 10.1007/s12015-015-9590-z)
Coulson-Thomas, V. J., Coulson-Thomas, Y. M., Gesteira, T. F., & Kao, W. W. Y. (2016). Extrinsic and Intrinsic Mechanisms by Which Mesenchymal Stem Cells Suppress the Immune System. The Ocular Surface, 14, 121–134. https://doi.org/10.1016/j.jtos.2015.11.004. (PMID: 10.1016/j.jtos.2015.11.004268048154842329)
Argani, H. (2019). Anti-HLA antibody: The role of epitopes in organ transplantation. Experimental and Clinical Transplantation, 17, 38–42. https://doi.org/10.6002/ECT.MESOT2018.L41. (PMID: 10.6002/ECT.MESOT2018.L4130777521)
C.M. Lin, R.G. Gill, Direct and indirect allograft recognition: Pathways dictating graft rejection mechanisms, Curr. Opin. Organ Transplant. 21 (2016). https://doi.org/10.1097/MOT.0000000000000263 .
Uccelli, A., & de Rosbo, N. K. (2015). The immunomodulatory function of mesenchymal stem cells: Mode of action and pathways. Annals of the New York Academy of Sciences, 1351, 114–126. https://doi.org/10.1111/nyas.12815. (PMID: 10.1111/nyas.1281526152292)
Wu, C., Zhao, Y., Xiao, X., Fan, Y., Kloc, M., Liu, W., Ghobrial, R. M., Lan, P., He, X., & Li, X. C. (2016). Graft-Infiltrating Macrophages Adopt an M2 Phenotype and Are Inhibited by Purinergic Receptor P2X7 Antagonist in Chronic Rejection. American Journal of Transplantation, 16, 2563–2573. https://doi.org/10.1111/ajt.13808. (PMID: 10.1111/ajt.13808275757245552361)
Petersson, E., Östraat, Ö., Ekberg, H., Hansson, J., Simanaitis, M., Brodin, T., Dohlsten, M., & Hedlund, G. (1997). Allogeneic heart transplantation activates alloreactive NK cells. Cellular Immunology, 175, 25–32. https://doi.org/10.1006/cimm.1996.1031. (PMID: 10.1006/cimm.1996.10319015185)
Lu, Y., Liu, J., Liu, Y., Qin, Y., Luo, Q., Wang, Q., & Duan, H. (2015). TLR4 plays a crucial role in MSC-induced inhibition of NK cell function. Biochemical and Biophysical Research Communications, 464, 541–547. https://doi.org/10.1016/j.bbrc.2015.07.002. (PMID: 10.1016/j.bbrc.2015.07.00226159925)
F. Gao, S.M. Chiu, D.A.L. Motan, Z. Zhang, L. Chen, H.L. Ji, H.F. Tse, Q.L. Fu, Q. Lian, Mesenchymal stem cells and immunomodulation: Current status and future prospects, Cell Death Dis. 7 (2016). https://doi.org/10.1038/cddis.2015.327 .
Rashedi, I., Gómez-Aristizábal, A., Wang, X. H., Viswanathan, S., & Keating, A. (2017). TLR3 or TLR4 Activation Enhances Mesenchymal Stromal Cell-Mediated Treg Induction via Notch Signaling. Stem Cells., 35, 265–275. https://doi.org/10.1002/stem.2485. (PMID: 10.1002/stem.248527571579)
Wang, Y., Chen, X., Cao, W., & Shi, Y. (2014). Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nature Immunology, 15, 1009–1016. https://doi.org/10.1038/ni.3002. (PMID: 10.1038/ni.300225329189)
Ciavarella, C., & Pasquinelli, G. (2020). The Dual Nature of Mesenchymal Stem Cells (MSCs): Yin and Yang of the Inflammatory Process. Updat. Mesenchymal Induc. Pluripotent Stem Cells. https://doi.org/10.5772/intechopen.82877. (PMID: 10.5772/intechopen.82877)
Marigo, I., & Dazzi, F. (2011). The immunomodulatory properties of mesenchymal stem cells. Semin. Immunopathol., 33, 593–602. https://doi.org/10.1007/s00281-011-0267-7. (PMID: 10.1007/s00281-011-0267-721499984)
Djouad, F., Charbonnier, L.-M., Bouffi, C., Louis-Plence, P., Bony, C., Apparailly, F., Cantos, C., Jorgensen, C., & Noël, D. (2007). Mesenchymal Stem Cells Inhibit the Differentiation of Dendritic Cells Through an Interleukin-6-Dependent Mechanism. Stem Cells., 25, 2025–2032. https://doi.org/10.1634/stemcells.2006-0548. (PMID: 10.1634/stemcells.2006-054817510220)
W. hua Liu, J. jin Liu, J. Wu, L. lu Zhang, F. Liu, L. Yin, M. mao Zhang, B. Yu, Novel Mechanism of Inhibition of Dendritic Cells Maturation by Mesenchymal Stem Cells via Interleukin-10 and the JAK1/STAT3 Signaling Pathway, PLoS One. 8 (2013). https://doi.org/10.1371/journal.pone.0055487 .
R. Cui, H. Rekasi, M. Hepner-Schefczyk, K. Fessmann, R.M. Petri, K. Bruderek, S. Brandau, M. Jäger, S.B. Flohé, Human mesenchymal stromal/stem cells acquire immunostimulatory capacity upon cross-talk with natural killer cells and might improve the NK cell function of immunocompromised patients, Stem Cell Res. Ther. 7 (2016). https://doi.org/10.1186/s13287-016-0353-9 .
Michelo, C. M., Fasse, E., van Cranenbroek, B., Linda, K., van der Meer, A., Abdelrazik, H., & Joosten, I. (2016). Added effects of dexamethasone and mesenchymal stem cells on early Natural Killer cell activation. Transplant Immunology, 37, 1–9. https://doi.org/10.1016/j.trim.2016.04.008. (PMID: 10.1016/j.trim.2016.04.00827142560)
Glass, C. K., & Natoli, G. (2016). Molecular control of activation and priming in macrophages. Nature Immunology, 17, 26–33. https://doi.org/10.1038/ni.3306. (PMID: 10.1038/ni.330626681459)
R.S. Waterman, S.L. Tomchuck, S.L. Henkle, A.M. Betancourt, A new mesenchymal stem cell (MSC) paradigm: Polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype, PLoS One. 5 (2010). https://doi.org/10.1371/journal.pone.0010088 .
Bernardo, M. E., & Fibbe, W. E. (2013). Mesenchymal stromal cells: Sensors and switchers of inflammation. Cell Stem Cell, 13, 392–402. https://doi.org/10.1016/j.stem.2013.09.006. (PMID: 10.1016/j.stem.2013.09.00624094322)
Abdi, J., Rashedi, I., & Keating, A. (2018). Concise Review: TLR Pathway-miRNA Interplay in Mesenchymal Stromal Cells: Regulatory Roles and Therapeutic Directions. Stem Cells., 36, 1655–1662. https://doi.org/10.1002/stem.2902. (PMID: 10.1002/stem.290230171669)
Chinnadurai, R., Copland, I. B., Garcia, M. A., Petersen, C. T., Lewis, C. N., Waller, E. K., Kirk, A. D., & Galipeau, J. (2016). Cryopreserved Mesenchymal Stromal Cells Are Susceptible to T-Cell Mediated Apoptosis Which Is Partly Rescued by IFNγ Licensing. Stem Cells., 34, 2429–2442. https://doi.org/10.1002/stem.2415. (PMID: 10.1002/stem.2415272993625016228)
Kean, T. J., Lin, P., Caplan, A. I., & Dennis, J. E. (2013). MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int. https://doi.org/10.1155/2013/732742. (PMID: 10.1155/2013/732742240002863755386)
Shi, Y., Su, J., Roberts, A. I., Shou, P., Rabson, A. B., & Ren, G. (2012). How mesenchymal stem cells interact with tissue immune responses. Trends in Immunology, 33, 136–143. https://doi.org/10.1016/j.it.2011.11.004. (PMID: 10.1016/j.it.2011.11.004222273173412175)
L. Fan, C. Hu, J. Chen, P. Cen, J. Wang, L. Li, Interaction between mesenchymal stem cells and B-cells, Int. J. Mol. Sci. 17 (2016). https://doi.org/10.3390/ijms17050650 .
Carmen, G.-C.M., Aitor, C., Vicent, B., Cesar, R.-N., Ana, D., Andrea, S.-P., & Jose, V. (2018). Early reductive stress followed by a late onset oxidative stress in acute myocardial infarction. Free Radical Biology & Medicine, 120, S89. https://doi.org/10.1016/j.freeradbiomed.2018.04.295. (PMID: 10.1016/j.freeradbiomed.2018.04.295)
G.A. Kurian, R. Rajagopal, S. Vedantham, M. Rajesh, The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited, Oxid. Med. Cell. Longev. 2016 (2016). https://doi.org/10.1155/2016/1656450 .
Valle-Prieto, A., & Conget, P. A. (2010). Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev., 19, 1885–1893. https://doi.org/10.1089/scd.2010.0093. (PMID: 10.1089/scd.2010.009320380515)
Liu, T., Ma, X., Ouyang, T., Chen, H., Lin, J., Liu, J., Xiao, Y., Yu, J., & Huang, Y. (2018). SIRT1 reverses senescence via enhancing autophagy and attenuates oxidative stress-induced apoptosis through promoting p53 degradation. International Journal of Biological Macromolecules, 117, 225–234. https://doi.org/10.1016/j.ijbiomac.2018.05.174. (PMID: 10.1016/j.ijbiomac.2018.05.17429803744)
Rojas, M., Iyer, S. S., Torres-Gonzalez, E., Neujahr, D. C., Kwon, M., Brigham, K. L., Jones, D. P., & Mora, A. L. (2010). Effect of bone marrow-derived mesenchymal stem cells on endotoxin-induced oxidation of plasma cysteine and glutathione in mice. Stem Cells Int. https://doi.org/10.4061/2010/868076. (PMID: 10.4061/2010/868076210488552963315)
Mahrouf-Yorgov, M., Augeul, L., Da Silva, C. C., Jourdan, M., Rigolet, M., Manin, S., Ferrera, R., Ovize, M., Henry, A., Guguin, A., Meningaud, J. P., Dubois-Randé, J. L., Motterlini, R., Foresti, R., & Rodriguez, A. M. (2017). Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death and Differentiation, 24, 1224–1238. https://doi.org/10.1038/cdd.2017.51. (PMID: 10.1038/cdd.2017.51285248595520168)
Desantiago, J., Bare, D. J., & Banach, K. (2013). Ischemia/reperfusion injury protection by mesenchymal stem cell derived antioxidant capacity. Stem Cells Dev., 22, 2497–2507. https://doi.org/10.1089/scd.2013.0136. (PMID: 10.1089/scd.2013.0136236145553760058)
Sun, C. K., Zhen, Y. Y., Leu, S., Tsai, T. H., Chang, L. T., Sheu, J. J., Chen, Y. L., Chua, S., Chai, H. T., Lu, H. I., Chang, H. W., Lee, F. Y., & Yip, H. K. (2014). Direct implantation versus platelet-rich fibrin-embedded adipose-derived mesenchymal stem cells in treating rat acute myocardial infarction. International Journal of Cardiology, 173, 410–423. https://doi.org/10.1016/j.ijcard.2014.03.015. (PMID: 10.1016/j.ijcard.2014.03.01524685001)
J. Ni, X. Liu, Y. Yin, P. Zhang, Y.W. Xu, Z. Liu, Exosomes derived from TIMP2-modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/ SFRP2 pathway, Oxid. Med. Cell. Longev. 2019 (2019). https://doi.org/10.1155/2019/1958941 .
R.H. ...et.al, Cardiogenic differentiation and transdifferentiation... - Google Scholar, Circ. Res. 103 (2008) 1058–1071.
M. Natsumeda, V. Florea, … A.R.-J. of the, U. 2017, A combination of allogeneic stem cells promotes cardiac regeneration, Onlinejacc.Org. 70 (2017).
Hatzistergos, K. E., Saur, D., Seidler, B., Balkan, W., Breton, M., Valasaki, K., Takeuchi, L. M., Landin, A. M., Khan, A., & Hare, J. M. (2016). Stimulatory Effects of Mesenchymal Stem Cells on cKit+ Cardiac Stem Cells Are Mediated by SDF1/CXCR4 and SCF/cKit Signaling Pathways. Circulation Research, 119, 921–930. https://doi.org/10.1161/CIRCRESAHA.116.309281. (PMID: 10.1161/CIRCRESAHA.116.309281274819565180614)
Urbanek, K., Rota, M., Cascapera, S., Bearzi, C., Nascimbene, A., De Angelis, A., Hosoda, T., Chimenti, S., Baker, M., Limana, F., Nurzynska, D., Torella, D., Rotatori, F., Rastaldo, R., Musso, E., Quaini, F., Leri, A., Kajstura, J., & Anversa, P. (2005). Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circulation Research, 97, 663–673. https://doi.org/10.1161/01.RES.0000183733.53101.11. (PMID: 10.1161/01.RES.0000183733.53101.1116141414)
O’Neill, H. S., O’Sullivan, J., Porteous, N., Ruiz-Hernandez, E., Kelly, H. M., O’Brien, F. J., & Duffy, G. P. (2018). A collagen cardiac patch incorporating alginate microparticles permits the controlled release of hepatocyte growth factor and insulin-like growth factor-1 to enhance cardiac stem cell migration and proliferation. Journal of Tissue Engineering and Regenerative Medicine, 12, e384–e394. https://doi.org/10.1002/term.2392. (PMID: 10.1002/term.239227943590)
Zisa, D., Shabbir, A., Suzuki, G., & Lee, T. (2009). Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair. Biochemical and Biophysical Research Communications, 390, 834–838. https://doi.org/10.1016/j.bbrc.2009.10.058. (PMID: 10.1016/j.bbrc.2009.10.058198363592788008)
Tang, J., Wang, J., Kong, X., Yang, J., Guo, L., Zheng, F., Zhang, L., Huang, Y., & Wan, Y. (2009). Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Experimental Cell Research, 315, 3521–3531. https://doi.org/10.1016/j.yexcr.2009.09.026. (PMID: 10.1016/j.yexcr.2009.09.02619800880)
Haider, H. K., Jiang, S., Idris, N. M., & Ashraf, M. (2008). IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1α/CXCR4 signaling to promote myocardial repair. Circulation Research, 103, 1300–1308. https://doi.org/10.1161/CIRCRESAHA.108.186742. (PMID: 10.1161/CIRCRESAHA.108.18674218948617)
Park, S., Jang, H., Kim, B. S., Hwang, C., Jeong, G. S., & Park, Y. (2017). Directional migration of mesenchymal stem cells under an SDF-1α gradient on a microfluidic device. PLoS ONE. https://doi.org/10.1371/journal.pone.0184595. (PMID: 10.1371/journal.pone.0184595292871015747440)
Chen, M. F., Lee, B. C., Hsu, H. C., Tseng, W. Y. I., Chen, C. Y., Lin, H. J., Ho, Y. L., & Su, M. J. (2009). Cell therapy generates a favourable chemokine gradient for stem cell recruitment into the infarcted heart in rabbits. European Journal of Heart Failure, 11, 238–245. https://doi.org/10.1093/eurjhf/hfn035. (PMID: 10.1093/eurjhf/hfn035191474472645052)
K. Zuo, D. Kuang, Y. Wang, Y. Xia, W. Tong, X. Wang, Y. Chen, Y. Duan, G. Wang, SCF/c-kit transactivates CXCR4-serine 339 phosphorylation through G protein-coupled receptor kinase 6 and regulates cardiac stem cell migration, Sci. Rep. 6 (2016). https://doi.org/10.1038/srep26812 .
Leri, A., Rota, M., Hosoda, T., Goichberg, P., & Anversa, P. (2014). Cardiac stem cell niches. Stem Cell Res., 13, 631–646. https://doi.org/10.1016/j.scr.2014.09.001. (PMID: 10.1016/j.scr.2014.09.001252670734253904)
Gnecchi, M., He, H., Noiseux, N., Liang, O. D., Zhang, L., Morello, F., Mu, H., Melo, L. G., Pratt, R. E., Ingwall, J. S., & Dzau, V. J. (2006). Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. The FASEB Journal, 20, 661–669. https://doi.org/10.1096/fj.05-5211com. (PMID: 10.1096/fj.05-5211com16581974)
Mirotsou, M., Zhang, Z., Deb, A., Zhang, L., Gnecchi, M., Noiseux, N., Mu, H., Pachori, A., & Dzau, V. (2007). Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc. Natl. Acad. Sci. U. S. A., 104, 1643–1648. https://doi.org/10.1073/pnas.0610024104. (PMID: 10.1073/pnas.0610024104172513501785280)
J. Ma, Y. Zhao, L. Sun, X. Sun, … X.Z.-S. cells, U. 2017, Exosomes derived from AKt‐modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet, Wiley Online Libr. (2016).
Wang, X., Zhao, T., Huang, W., Wang, T., Qian, J., Xu, M., Kranias, E. G., Wang, Y., & Fan, G. C. (2009). Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells., 27, 3021–3031. https://doi.org/10.1002/stem.230. (PMID: 10.1002/stem.230198169492806498)
Tang, J. M., Wang, J. N., Zhang, L., Zheng, F., Yang, J. Y., Kong, X., Guo, L. Y., Chen, L., Huang, Y. Z., Wan, Y., & Chen, S. Y. (2011). VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovascular Research, 91, 402–411. https://doi.org/10.1093/cvr/cvr053. (PMID: 10.1093/cvr/cvr053213458053139446)
J. Bobi, N. Solanes, R. Fernández-Jiménez, C. Galán-Arriola, A.P. Dantas, L. Fernández-Friera, C. Gálvez-Montón, E. Rigol-Monzó, J. Agüero, J. Ramírez, M. Roqué, A. Bayés-Genís, J. Sánchez-González, A. García-Álvarez, M. Sabaté, S. Roura, B. Ibáñez, M. Rigol, Intracoronary administration of allogeneic adipose tissue-derived mesenchymal stem cells improves myocardial perfusion but not left ventricle function, in a translational model of acute myocardial infarction, J. Am. Heart Assoc. 6 (2017). https://doi.org/10.1161/JAHA.117.005771 .
Huang, L., Yang, L., Ding, Y., Jiang, X., Xia, Z., & You, Z. (2020). Human umbilical cord mesenchymal stem cells-derived exosomes transfers microRNA-19a to protect cardiomyocytes from acute myocardial infarction by targeting SOX6. Cell Cycle, 19, 339–353. https://doi.org/10.1080/15384101.2019.1711305. (PMID: 10.1080/15384101.2019.1711305319241217028160)
Chen, R., Cai, X., Liu, J., Bai, B., & Li, X. (2018). Sphingosine 1-phosphate promotes mesenchymal stem cell-mediated cardioprotection against myocardial infarction via ERK1/2-MMP-9 and Akt signaling axis. Life Sciences, 215, 31–42. https://doi.org/10.1016/j.lfs.2018.10.047. (PMID: 10.1016/j.lfs.2018.10.04730367841)
Ceccariglia, S., Cargnoni, A., Silini, A. R., & Parolini, O. (2020). Autophagy: A potential key contributor to the therapeutic action of mesenchymal stem cells. Autophagy, 16, 28–37. https://doi.org/10.1080/15548627.2019.1630223. (PMID: 10.1080/15548627.2019.163022331185790)
Z. Zhang, C. Yang, M. Shen, M. Yang, Z. Jin, L. Ding, W. Jiang, J. Yang, H. Chen, F. Cao, T. Hu, Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction, Stem Cell Res. Ther. 8 (2017). https://doi.org/10.1186/s13287-017-0543-0 .
O. Ham, S.Y. Lee, C.Y. Lee, J.H. Park, J. Lee, H.H. Seo, M.J. Cha, E. Choi, S. Kim, K.C. Hwang, Let-7b suppresses apoptosis and autophagy of human mesenchymal stem cells transplanted into ischemia/reperfusion injured heart 7by targeting caspase-3, Stem Cell Res. Ther. 6 (2015). https://doi.org/10.1186/s13287-015-0134-x .
Li, T., Gu, J., Yang, O., Wang, J., Wang, Y., & Kong, J. (2020). Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miRNA-29c Decreases Cardiac Ischemia/Reperfusion Injury Through Inhibition of Excessive Autophagy via the PTEN/Akt/mTOR Signaling Pathway. Circulation Journal, 84, 1304–1311. https://doi.org/10.1253/circj.CJ-19-1060. (PMID: 10.1253/circj.CJ-19-106032581152)
Horn, M. A., & Trafford, A. W. (2016). Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling. Journal of Molecular and Cellular Cardiology, 93, 175–185. https://doi.org/10.1016/j.yjmcc.2015.11.005. (PMID: 10.1016/j.yjmcc.2015.11.005265783934945757)
Li, L., Zhang, S., Zhang, Y., Yu, B., Xu, Y., & Guan, Z. (2009). Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Molecular Biology Reports, 36, 725–731. https://doi.org/10.1007/s11033-008-9235-2. (PMID: 10.1007/s11033-008-9235-218368514)
Chen, Y. L., Sun, C. K., Tsai, T. H., Chang, L. T., Leu, S., Zhen, Y. Y., Sheu, J. J., Chua, S., Yeh, K. H., Lu, H. I., Chang, H. W., Lee, F. Y., & Yip, H. K. (2015). Adipose-derived mesenchymal stem cells embedded in platelet-rich fibrin scaffolds promote angiogenesis, preserve heart function, and reduce left ventricular remodeling in rat acute myocardial infarction. Am. J. Transl. Res., 7, 781–803. (PMID: 261758434494133)
Kandalam, V., Basu, R., Abraham, T., Wang, X., Soloway, P. D., Jaworski, D. M., Oudit, G. Y., & Kassiri, Z. (2010). TIMP2 deficiency accelerates adverse post-myocardial infarction remodeling because of enhanced MT1-MMP activity despite lack of MMP2 activation. Circulation Research, 106, 796–808. https://doi.org/10.1161/CIRCRESAHA.109.209189. (PMID: 10.1161/CIRCRESAHA.109.20918920056917)
Li, S. H., Guo, J., Wu, J., Sun, Z., Han, M., Shan, S. W., Deng, Z., Yang, B. B., Weisel, R. D., & Li, R. K. (2013). miR-17 targets tissue inhibitor of metalloproteinase 1 and 2 to modulate cardiac matrix remodeling. The FASEB Journal, 27, 4254–4265. https://doi.org/10.1096/fj.13-231688. (PMID: 10.1096/fj.13-23168823825222)
Kim, S. W., Lee, D. W., Yu, L. H., Zhang, H. Z., Kim, C. E., Kim, J. M., Park, T. H., Cha, K. S., Seo, S. Y., Roh, M. S., Lee, K. C., Jung, J. S., & Kim, M. H. (2012). Mesenchymal stem cells overexpressing GCP-2 improve heart function through enhanced angiogenic properties in a myocardial infarction model. Cardiovascular Research, 95, 495–506. https://doi.org/10.1093/cvr/cvs224. (PMID: 10.1093/cvr/cvs22422886775)
J. Liu, P. Zhu, P. Song, W. Xiong, H. Chen, W. Peng, S. Wang, S. Li, Z. Fu, Y. Wang, H. Wang, Pretreatment of Adipose Derived Stem Cells with Curcumin Facilitates Myocardial Recovery via Antiapoptosis and Angiogenesis, Stem Cells Int. 2015 (2015). https://doi.org/10.1155/2015/638153 .
Teng, X., Chen, L., Chen, W., Yang, J., Yang, Z., & Shen, Z. (2015). Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cellular Physiology and Biochemistry, 37, 2415–2424. https://doi.org/10.1159/000438594. (PMID: 10.1159/00043859426646808)
Fang, J., Chen, L., Fan, L., Wu, L., Chen, X., Li, W., Lin, Y., & Wang, W. (2011). Enhanced therapeutic effects of mesenchymal stem cells on myocardial infarction by ischemic postconditioning through paracrine mechanisms in rats. Journal of Molecular and Cellular Cardiology, 51, 839–847. https://doi.org/10.1016/j.yjmcc.2011.06.013. (PMID: 10.1016/j.yjmcc.2011.06.01321763697)
Chi, N. H., Yang, M. C., Chung, T. W., Chen, J. Y., Chou, N. K., & Wang, S. S. (2012). Cardiac repair achieved by bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model. Biomaterials, 33, 5541–5551. https://doi.org/10.1016/j.biomaterials.2012.04.030. (PMID: 10.1016/j.biomaterials.2012.04.03022575829)
K. Wu, B. Zhou, C. Yu, B. Cui, S. Lu, … Z.H.-T.A. of thoracic, U. 2007, Therapeutic potential of human umbilical cord derived stem cells in a rat myocardial infarction model, Elsevier. 83 (2007) 1491–1498.
Zhao, L., Liu, X., Zhang, Y., Liang, X., Ding, Y., Xu, Y., Fang, Z., & Zhang, F. (2016). Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction. Experimental Cell Research, 344, 30–39. https://doi.org/10.1016/j.yexcr.2016.03.024. (PMID: 10.1016/j.yexcr.2016.03.02427025401)
S. Deng, X. Zhou, Z. Ge, Y. Song, H. Wang, X. Liu, D. Zhang, Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization, Int. J. Biochem. Cell Biol. 114 (2019). https://doi.org/10.1016/j.biocel.2019.105564 .
Dayan, V., Yannarelli, G., Billia, F., Filomeno, P., Wang, X. H., Davies, J. E., & Keating, A. (2011). Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Research in Cardiology, 106, 1299–1310. https://doi.org/10.1007/s00395-011-0221-9. (PMID: 10.1007/s00395-011-0221-921901289)
Xu, R., Zhang, F., Chai, R., Zhou, W., Hu, M., Liu, B., Chen, X., Liu, M., Xu, Q., Liu, N., & Liu, S. (2019). Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. Journal of Cellular and Molecular Medicine, 23, 7617–7631. https://doi.org/10.1111/jcmm.14635. (PMID: 10.1111/jcmm.14635315573966815833)
Zhao, J., Li, X., Hu, J., Chen, F., Qiao, S., Sun, X., Gao, L., Xie, J., & Xu, B. (2019). Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovascular Research, 115, 1205–1216. https://doi.org/10.1093/cvr/cvz040. (PMID: 10.1093/cvr/cvz040307533446529919)
Han, D., Huang, W., Li, X., Gao, L., Su, T., Li, X., Ma, S., Liu, T., Li, C., Chen, J., Gao, E., & Cao, F. (2016). Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway. Journal of Pineal Research, 60, 178–192. https://doi.org/10.1111/jpi.12299. (PMID: 10.1111/jpi.1229926607398)
Li, N., Yang, Y. J., Qian, H. Y., Li, Q., Zhang, Q., Li, X. D., Dong, Q. T., Xu, H., Song, L., & Zhang, H. (2015). Intravenous administration of atorvastatin-pretreated mesenchymal stem cells improves cardiac performance after acute myocardial infarction: Role of CXCR4. Am. J. Transl. Res., 7, 1058–1070. (PMID: 262797504532739)
Zeng, B., Chen, H., Zhu, C., Ren, X., Lin, G., & Cao, F. (2008). Effects of combined mesenchymal stem cells and heme oxygenase-1 therapy on cardiac performance. Eur. J. Cardio-Thoracic Surg., 34, 850–856. https://doi.org/10.1016/j.ejcts.2008.05.049. (PMID: 10.1016/j.ejcts.2008.05.049)
Paul, A., Srivastava, S., Chen, G., Shum-Tim, D., & Prakash, S. (2013). Functional Assessment of Adipose Stem Cells for Xenotransplantation Using Myocardial Infarction Immunocompetent Models: Comparison with Bone Marrow Stem Cells. Cell Biochemistry and Biophysics, 67, 263–273. https://doi.org/10.1007/s12013-011-9323-0. (PMID: 10.1007/s12013-011-9323-022205499)
Henning, R. J., Burgos, J. D., Ondrovic, L., Sanberg, P., Balis, J., & Morgan, M. B. (2006). Human umbilical cord blood progenitor cells are attracted to infarcted myocardium and significantly reduce myocardial infarction size. Cell Transplantation, 15, 647–658. https://doi.org/10.3727/000000006783981611. (PMID: 10.3727/00000000678398161117176616)
Mias, C., Lairez, O., Trouche, E., Roncalli, J., Calise, D., Seguelas, M. H., Ordener, C., Piercecchi-Marti, M. D., Auge, N., Salvayre, A. N., Bourin, P., Parini, A., & Cussac, D. (2009). Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells., 27, 2734–2743. https://doi.org/10.1002/stem.169. (PMID: 10.1002/stem.16919591227)
Y. Zhao, X. Sun, W. Cao, J. Ma, L. Sun, H. Qian, W. Zhu, W. Xu, Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury, Stem Cells Int. 2015 (2015). https://doi.org/10.1155/2015/761643 .
Yao, L. T., Zhao, Q., Qin, X., Shen, L., Cheng, L., Ge, J., & Phillips, M. I. (2005). Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Annals of Thoracic Surgery, 80, 229–237. https://doi.org/10.1016/j.athoracsur.2005.02.072. (PMID: 10.1016/j.athoracsur.2005.02.072)
Cho, J., Zhai, P., Maejima, Y., & Sadoshima, J. (2011). Myocardial injection with GSK-3β-overexpressing bone marrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction. Circulation Research, 108, 478–489. https://doi.org/10.1161/CIRCRESAHA.110.229658. (PMID: 10.1161/CIRCRESAHA.110.229658212334553109296)
Zhang, W., Liu, X. C., Yang, L., Zhu, D. L., Zhang, Y. D., Chen, Y., & Zhang, H. Y. (2013). Wharton’s jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction. Coronary Artery Disease, 24, 549–558. https://doi.org/10.1097/MCA.0b013e3283640f00. (PMID: 10.1097/MCA.0b013e3283640f0023892469)
Jang, J., Park, H. J., Kim, S. W., Kim, H., Park, J. Y., Na, S. J., Kim, H. J., Park, M. N., Choi, S. H., Park, S. H., Kim, S. W., Kwon, S. M., Kim, P. J., & Cho, D. W. (2017). 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. https://doi.org/10.1016/j.biomaterials.2016.10.026. (PMID: 10.1016/j.biomaterials.2016.10.02629222974)
Kim, H., Bae, C., Kook, Y. M., Koh, W. G., Lee, K., & Park, M. H. (2019). Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration. Stem Cell Research & Therapy. https://doi.org/10.1186/s13287-018-1130-8. (PMID: 10.1186/s13287-018-1130-8)
T.A. Et.al, Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel, Biofabrication. 10 (2018).
Melhem, M. R., Park, J., Knapp, L., Reinkensmeyer, L., Cvetkovic, C., Flewellyn, J., Lee, M. K., Jensen, T. W., Bashir, R., Kong, H., & Schook, L. B. (2017). 3D Printed Stem-Cell-Laden, Microchanneled Hydrogel Patch for the Enhanced Release of Cell-Secreting Factors and Treatment of Myocardial Infarctions. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/acsbiomaterials.6b00176. (PMID: 10.1021/acsbiomaterials.6b00176)
Rahmi, G., Pidial, L., Silva, A. K. A., Blondiaux, E., Meresse, B., Gazeau, F., Autret, G., Balvay, D., Cuenod, C. A., Perretta, S., Tavitian, B., Wilhelm, C., Cellier, C., & Clément, O. (2016). Designing 3D mesenchymal stem cell sheets merging magnetic and fluorescent features: When cell sheet technology meets image-guided cell therapy. Theranostics., 6, 739–751. https://doi.org/10.7150/thno.14064. (PMID: 10.7150/thno.14064270224204805667)
Park, S. J., Kim, R. Y., Park, B. W., Lee, S., Choi, S. W., Park, J. H., Choi, J. J., Kim, S. W., Jang, J., Cho, D. W., Chung, H. M., Moon, S. H., Ban, K., & Park, H. J. (2019). Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction. Nature Communications. https://doi.org/10.1038/s41467-019-11091-2. (PMID: 10.1038/s41467-019-11091-2318628826925134)
Mombini, S., Mohammadnejad, J., Bakhshandeh, B., Narmani, A., Nourmohammadi, J., Vahdat, S., & Zirak, S. (2019). Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2019.08.046. (PMID: 10.1016/j.ijbiomac.2019.08.04631400428)
Sokolowska, P., Zukowski, K., Lasocka, I., Szulc-Dabrowska, L., & Jastrzebska, E. (2020). Human mesenchymal stem cell (hMSC) differentiation towards cardiac cells using a new microbioanalytical method. The Analyst, 145, 3017–3028. https://doi.org/10.1039/c9an02366f. (PMID: 10.1039/c9an02366f32133460)
S. Pérez-Rodríguez, E. Tomás-González, J.M. García-Aznar, 3D cell migration studies for chemotaxis on microfluidic-based chips: A comparison between cardiac and dermal fibroblasts, Bioengineering. 5 (2018). https://doi.org/10.3390/bioengineering5020045 .
Chikarmane, V., & Peterson, C. (2008). A computational model for understanding stem cell, trophectoderm and endoderm lineage determination. PLoS ONE. https://doi.org/10.1371/journal.pone.0003478. (PMID: 10.1371/journal.pone.0003478)
Garikipati, V. N. S., Shoja-Taheri, F., Davis, M. E., & Kishore, R. (2018). Extracellular vesicles and the application of system biology and computational modeling in cardiac repair. Circulation Research. https://doi.org/10.1161/CIRCRESAHA.117.311215. (PMID: 10.1161/CIRCRESAHA.117.311215299766876512976)
Kernik, D. C., Morotti, S., Di Wu, H., Garg, P., Duff, H. J., Kurokawa, J., Jalife, J., Wu, J. C., Grandi, E., & Clancy, C. E. (2019). A computational model of induced pluripotent stem-cell derived cardiomyocytes incorporating experimental variability from multiple data sources. Journal of Physiology, 597, 4533–4564. https://doi.org/10.1113/JP277724. (PMID: 10.1113/JP27772431278749)
Mayourian, J., Cashman, T. J., Ceholski, D. K., Johnson, B. V., Sachs, D., Kaji, D. A., Sahoo, S., Hare, J. M., Hajjar, R. J., Sobie, E. A., & Costa, K. D. (2017). Experimental and Computational Insight into Human Mesenchymal Stem Cell Paracrine Signaling and Heterocellular Coupling Effects on Cardiac Contractility and Arrhythmogenicity. Circulation Research. https://doi.org/10.1161/CIRCRESAHA.117.310796. (PMID: 10.1161/CIRCRESAHA.117.310796286423295899516)
Consolo, F., Bariani, C., Mantalaris, A., Montevecchi, F., Redaelli, A., & Morbiducci, U. (2012). Computational modeling for the optimization of a cardiogenic 3D bioprocess of encapsulated embryonic stem cells. Biomechanics and Modeling in Mechanobiology. https://doi.org/10.1007/s10237-011-0308-0. (PMID: 10.1007/s10237-011-0308-021516431)
Roberts, E. G., Piekarski, B. L., Huang, K., Emani, S., Wong, J. Y., & Emani, S. M. (2019). Evaluation of Placental Mesenchymal Stem Cell Sheets for Myocardial Repair and Regeneration. Tissue Eng. - Part A. https://doi.org/10.1089/ten.tea.2018.0035. (PMID: 10.1089/ten.tea.2018.003530122114)
Tanaka, Y., Shirasawa, B., Takeuchi, Y., Kawamura, D., Nakamura, T., Samura, M., Nishimoto, A., Ueno, K., Morikage, N., Hosoyama, T., & Hamano, K. (2016). Autologous preconditioned mesenchymal stem cell sheets improve left ventricular function in a rabbit old myocardial infarction model. Am. J. Transl. Res., 8, 2222–2233. (PMID: 273473294891434)
M. Miklíková, D. Jarkovská, M. Čedíková, J. Švíglerová, J. Kuncová, L. Nalos, T. Kubíková, V. Liška, M. Holubová, D. Lysák, M. Králíčková, L. Vištejnová, M. Štengl, Beneficial effects of mesenchymal stem cells on adult porcine cardiomyocytes in non-contact co-culture, Physiol. Res. 67 (2018) S619–S631. https://doi.org/10.33549/physiolres.934051 .
Aguirre, A., Planell, J. A., & Engel, E. (2010). Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochemical and Biophysical Research Communications, 400, 284–291. https://doi.org/10.1016/j.bbrc.2010.08.073. (PMID: 10.1016/j.bbrc.2010.08.07320732306)
Heo, D. N., Hospodiuk, M., & Ozbolat, I. T. (2019). Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2019.02.046. (PMID: 10.1016/j.actbio.2019.02.04630831326)
Lemcke, H., Gaebel, R., Skorska, A., Voronina, N., Lux, C. A., Petters, J., Sasse, S., Zarniko, N., Steinhoff, G., & David, R. (2017). Mechanisms of stem cell based cardiac repair-gap junctional signaling promotes the cardiac lineage specification of mesenchymal stem cells. Science and Reports. https://doi.org/10.1038/s41598-017-10122-6. (PMID: 10.1038/s41598-017-10122-6)
Stone, L. L. H., Chappuis, E., Marquez, M., McFalls, E. O., Kelly, R. F., & Butterick, T. (2019). Mitochondrial Respiratory Capacity is Restored in Hibernating Cardiomyocytes Following Co-Culture with Mesenchymal Stem Cells. Cell Med., 11, 215517901983493. https://doi.org/10.1177/2155179019834938. (PMID: 10.1177/2155179019834938)
M.H. Norahan, M. Pourmokhtari, M.R. Saeb, B. Bakhshi, M. Soufi Zomorrod, N. Baheiraei, Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties, Mater. Sci. Eng. C. (2019). https://doi.org/10.1016/j.msec.2019.109921 .
K. Roshanbinfar, Z. Mohammadi, A. Sheikh-Mahdi Mesgar, M.M. Dehghan, O.P. Oommen, J. Hilborn, F.B. Engel, Carbon nanotube doped pericardial matrix derived electroconductive biohybrid hydrogel for cardiac tissue engineering, Biomater. Sci. (2019). https://doi.org/10.1039/c9bm00434c .
Dong, Y., Hong, M., Dai, R., Wu, H., & Zhu, P. (2020). Engineered bioactive nanoparticles incorporated biofunctionalized ECM/silk proteins based cardiac patches combined with MSCs for the repair of myocardial infarction: In vitro and in vivo evaluations. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135976. (PMID: 10.1016/j.scitotenv.2019.13597633757248)
Shojaie, S., Rostamian, M., Samadi, A., Alvani, M. A. S., Khonakdar, H. A., Goodarzi, V., Zarrintaj, R., Servatan, M., Asefnejad, A., Baheiraei, N., & Saeb, M. R. (2019). Electrospun electroactive nanofibers of gelatin-oligoaniline/Poly (vinyl alcohol) templates for architecting of cardiac tissue with on-demand drug release. Polymers for Advanced Technologies, 30, 1473–1483. https://doi.org/10.1002/pat.4579. (PMID: 10.1002/pat.4579)
Musiał-Wysocka, A., Kot, M., & Majka, M. (2019). The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transplantation, 28, 801–812. https://doi.org/10.1177/0963689719837897. (PMID: 10.1177/0963689719837897310186696719501)
A. Bongso, C.-Y. Fong, The Therapeutic Potential, Challenges and Future Clinical Directions of Stem Cells from the Wharton’s Jelly of the Human Umbilical Cord, Stem Cell Rev. Reports 2012 92. 9 (2012) 226–240. https://doi.org/10.1007/S12015-012-9418-Z .
I.R. Murray, C.C. West, W.R. Hardy, A.W. James, T.S. Park, A. Nguyen, T. Tawonsawatruk, L. Lazzari, C. Soo, B. Péault, Natural history of mesenchymal stem cells, from vessel walls to culture vessels, Cell. Mol. Life Sci. 2013 718. 71 (2013) 1353–1374. https://doi.org/10.1007/S00018-013-1462-6 .
K. S, E. H, S. J, K. H, B. K, Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue, Stem Cells. 24 (2006) 1294–1301. https://doi.org/10.1634/STEMCELLS.2005-0342 .
van der S. TI, J. of L. SJ, A. P, van B. E, G. M, S. JP, C. MJ, D. PA, C. SA, Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease, Cardiovasc. Res. 91 (2011) 649–658. https://doi.org/10.1093/CVR/CVR113 .
Majka, M., Sułkowski, M., Badyra, B., & Musiałek, P. (2017). Concise Review: Mesenchymal Stem Cells in Cardiovascular Regeneration: Emerging Research Directions and Clinical Applications. Stem Cells Translational Medicine, 6, 1859–1867. https://doi.org/10.1002/sctm.16-0484. (PMID: 10.1002/sctm.16-0484288367326430161)
Z. Chen, L. Chen, C. Zeng, W.E. Wang, Functionally improved mesenchymal stem cells to better treat myocardial infarction, Stem Cells Int. 2018 (2018). https://doi.org/10.1155/2018/7045245 .
Squillaro, T., Peluso, G., & Galderisi, U. (2016). Clinical trials with mesenchymal stem cells: An update. Cell Transplantation, 25, 829–848. https://doi.org/10.3727/096368915X689622. (PMID: 10.3727/096368915X68962226423725)
Lee, J. W., Lee, S. H., Youn, Y. J., Ahn, M. S., Kim, J. Y., Yoo, B. S., Yoon, J., Kwon, W., Hong, I. S., Lee, K., Kwan, J., Park, K. S., Choi, D., Jang, Y. S., & Hong, M. K. (2014). A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. Journal of Korean Medical Science, 29, 23–31. https://doi.org/10.3346/jkms.2014.29.1.23. (PMID: 10.3346/jkms.2014.29.1.2324431901)
Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., Gerstenblith, G., DeMaria, A. N., Denktas, A. E., Gammon, R. S., Hermiller, J. B., Reisman, M. A., Schaer, G. L., Sherman, W., & Randomized, A. (2009). Double-Blind, Placebo-Controlled, Dose-Escalation Study of Intravenous Adult Human Mesenchymal Stem Cells (Prochymal) After Acute Myocardial Infarction. Journal of the American College of Cardiology, 54, 2277–2286. https://doi.org/10.1016/j.jacc.2009.06.055. (PMID: 10.1016/j.jacc.2009.06.055199589623580848)
L.R. Gao, Y. Chen, N.K. Zhang, X.L. Yang, H.L. Liu, Z.G. Wang, X.Y. Yan, Y. Wang, Z.M. Zhu, T.C. Li, L.H. Wang, H.Y. Chen, Y.D. Chen, C.L. Huang, P. Qu, C. Yao, B. Wang, G.H. Chen, Z.M. Wang, Z.Y. Xu, J. Bai, D. Lu, Y.H. Shen, F. Guo, M.Y. Liu, Y. Yang, Y.C. Ding, Y. Yang, H.T. Tian, Q.A. Ding, L.N. Li, X.C. Yang, X. Hu, Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: Double-blind, randomized controlled trial, BMC Med. 13 (2015). https://doi.org/10.1186/s12916-015-0399-z .
A. Chullikana, A. Sen Majumdar, S. Gottipamula, S. Krishnamurthy, A.S. Kumar, V.S. Prakash, P.K. Gupta, Randomized, double-blind, phase I/II study of intravenous allogeneic mesenchymal stromal cells in acute myocardial infarction, Cytotherapy. 17 (2015) 250–261. https://doi.org/10.1016/j.jcyt.2014.10.009 .
F. V., R. A.C., D. D.L., E.-K. J., N. M., B. M.N., T. B.A., K. A., S. I.H., L. A.M., M. M., G. S., L. M.H., B. J.J., H. R.C., C. M.G., V. K., P. M.V., G. E., M. R., D. C., A. F., V.-C. M., S. R.G., D. D., C. L.V., R. K.N., M. A., H. A.W., M. R.D., H. J.M., Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (The TRIDENT study), Circ. Res. 121 (2017) 1279–1290. https://doi.org/10.1161/CIRCRESAHA.117.311827 LK - http://findit.library.jhu.edu/resolve?sid=EMBASE&issn=15244571&id=doi:10.1161%2FCIRCRESAHA.117.311827&atitle=Dose+comparison+study+of+allogeneic+mesenchymal+stem+cells+in+patients+with+ischemic+cardiomyopathy+%28The+TRIDENT+study%29&stitle=Circ.+Res.&title=Circulation+Research&volume=121&issue=11&spage=1279&epage=1290&aulast=Florea&aufirst=Victoria&auinit=V.&aufull=Florea+V.&coden=CIRUA&isbn=&pages=1279-1290&date=2017&auinit1=V&auinitm =.
J.M. Hare, J.E. Fishman, G. Gerstenblith, D.L. DiFede Velazquez, J.P. Zambrano, V.Y. Suncion, M. Tracy, E. Ghersin, P. V. Johnston, J.A. Brinker, E. Breton, J. Davis-Sproul, I.H. Schulman, J. Byrnes, A.M. Mendizabal, M.H. Lowery, D. Rouy, P. Altman, C. Wong Po Foo, P. Ruiz, A. Amador, J. Da Silva, I.K. McNiece, A.W. Heldman, Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial, JAMA - J. Am. Med. Assoc. 308 (2012) 2369–2379. https://doi.org/10.1001/jama.2012.25321 .
Heldman, A. W., DiFede, D. L., Fishman, J. E., Zambrano, J. P., Trachtenberg, B. H., Karantalis, V., Mushtaq, M., Williams, A. R., Suncion, V. Y., McNiece, I. K., Ghersin, E., Soto, V., Lopera, G., Miki, R., Willens, H., Hendel, R., Mitrani, R., Pattany, P., Feigenbaum, G., … Hare, J. M. (2014). Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial. JAMA - J. Am. Med. Assoc., 311, 62–73. https://doi.org/10.1001/jama.2013.282909. (PMID: 10.1001/jama.2013.282909)
Guijarro, D., Lebrin, M., Lairez, O., Bourin, P., Piriou, N., Pozzo, J.-L., Lande, G., Berry, M., Le Tourneau, T., Cussac, D., Sensebe, L., Gross, F., Lamirault, G., Huynh, A., Manrique, A., Ruidavet, J. B., Elbaz, M., Trochu, J. N., Parini, A., … Roncalli, J. (2016). Intramyocardial transplantation of mesenchymal stromal cells for chronic myocardial ischemia and impaired left ventricular function: Results of the MESAMI 1 pilot trial. International Journal of Cardiology, 209, 258–265. https://doi.org/10.1016/j.ijcard.2016.02.016. (PMID: 10.1016/j.ijcard.2016.02.01626901787)
Mathiasen, A. B., Haack-Sørensen, M., Jørgensen, E., & Kastrup, J. (2013). Autotransplantation of mesenchymal stromal cells from bone-marrow to heart in patients with severe stable coronary artery disease and refractory angina - Final 3-year follow-up. International Journal of Cardiology, 170, 246–251. https://doi.org/10.1016/j.ijcard.2013.10.079. (PMID: 10.1016/j.ijcard.2013.10.07924211066)
A.A. Qayyum, A.B. Mathiasen, S. Helqvist, E. Jørgensen, M. Haack-Sørensen, A. Ekblond, J. Kastrup, Autologous adipose-derived stromal cell treatment for patients with refractory angina (MyStromalCell Trial): 3-years follow-up results, J. Transl. Med. 17 (2019). https://doi.org/10.1186/s12967-019-2110-1 .
Bartolucci, J., Verdugo, F. J., González, P. L., Larrea, R. E., Abarzua, E., Goset, C., Rojo, P., Palma, I., Lamich, R., Pedreros, P. A., Valdivia, G., Lopez, V. M., Nazzal, C., Alcayaga-Miranda, F., Cuenca, J., Brobeck, M. J., Patel, A. N., Figueroa, F. E., & Khoury, M. (2017). Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: A phase 1/2 randomized controlled trial (RIMECARD trial [Randomized clinical trial of intravenous infusion umbilical cord mesenchymal. Circulation Research, 121, 1192–1204. https://doi.org/10.1161/CIRCRESAHA.117.310712. (PMID: 10.1161/CIRCRESAHA.117.310712289745536372053)
Butler, J., Epstein, S. E., Greene, S. J., Quyyumi, A. A., Sikora, S., Kim, R. J., Anderson, A. S., Wilcox, J. E., Tankovich, N. I., Lipinski, M. J., Ko, Y. A., Margulies, K. B., Cole, R. T., Skopicki, H. A., & Gheorghiade, M. (2017). Intravenous Allogeneic Mesenchymal Stem Cells for Nonischemic Cardiomyopathy: Safety and Efficacy Results of a Phase II-A Randomized Trial. Circulation Research, 120, 332–340. https://doi.org/10.1161/CIRCRESAHA.116.309717. (PMID: 10.1161/CIRCRESAHA.116.30971727856497)
Mathiasen, A. B., Qayyum, A. A., Jørgensen, E., Helqvist, S., Kofoed, K. F., Haack-Sørensen, M., Ekblond, A., & Kastrup, J. (2020). Bone marrow-derived mesenchymal stromal cell treatment in patients with ischaemic heart failure: Final 4-year follow-up of the MSC-HF trial. European Journal of Heart Failure, 22, 884–892. https://doi.org/10.1002/ejhf.1700. (PMID: 10.1002/ejhf.170031863561)
Vrtovec, B., Poglajen, G., Sever, M., Lezaic, L., Domanovic, D., Cernelc, P., Haddad, F., & Torre-Amione, G. (2011). Effects of intracoronary stem cell transplantation in patients with dilated cardiomyopathy. Journal of Cardiac Failure, 17, 272–281. https://doi.org/10.1016/j.cardfail.2010.11.007. (PMID: 10.1016/j.cardfail.2010.11.00721440864)
Houtgraaf, J. H., Den Dekker, W. K., Van Dalen, B. M., Springeling, T., De Jong, R., Van Geuns, R. J., Geleijnse, M. L., Fernandez-Aviles, F., Zijlsta, F., Serruys, P. W., & Duckers, H. J. (2012). First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. Journal of the American College of Cardiology, 59, 539–540. https://doi.org/10.1016/j.jacc.2011.09.065. (PMID: 10.1016/j.jacc.2011.09.06522281257)
فهرسة مساهمة: Keywords: Advanced engineering technologies; Cardiac regenerative therapy; Differentiation; Mesenchymal stem cells; Paracrine activity; Therapeutic role
تواريخ الأحداث: Date Created: 20220205 Date Completed: 20220622 Latest Revision: 20220630
رمز التحديث: 20221213
DOI: 10.1007/s12015-021-10314-8
PMID: 35122226
قاعدة البيانات: MEDLINE
الوصف
تدمد:2629-3277
DOI:10.1007/s12015-021-10314-8