دورية أكاديمية

Clozapine induces astrocyte-dependent FDG-PET hypometabolism.

التفاصيل البيبلوغرافية
العنوان: Clozapine induces astrocyte-dependent FDG-PET hypometabolism.
المؤلفون: Rocha A; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil., Bellaver B; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil., Souza DG; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil., Schu G; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.; Proaction Laboratory, Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal., Fontana IC; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil., Venturin GT; Preclinical Research Center, Brain Institute (BraIns) of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil., Greggio S; Preclinical Research Center, Brain Institute (BraIns) of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil., Fontella FU; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil., Schiavenin ML; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil., Machado LS; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil., Miron D; Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil., da Costa JC; Preclinical Research Center, Brain Institute (BraIns) of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil., Rosa-Neto P; Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Canada.; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada., Souza DO; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.; Department of Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil., Pellerin L; Inserm U1313, Université et CHU de Poitiers, Poitiers, France., Zimmer ER; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil. eduardo.zimmer@ufrgs.br.; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil. eduardo.zimmer@ufrgs.br.; Department of Pharmacology, Universidade Federal Do Rio Grande Do Sul, (UFRGS), 2600 Ramiro Barcelos St, Porto Alegre, RS, 90035-003, Brazil. eduardo.zimmer@ufrgs.br.
المصدر: European journal of nuclear medicine and molecular imaging [Eur J Nucl Med Mol Imaging] 2022 Jun; Vol. 49 (7), pp. 2251-2264. Date of Electronic Publication: 2022 Feb 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Berlin Country of Publication: Germany NLM ID: 101140988 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1619-7089 (Electronic) Linking ISSN: 16197070 NLM ISO Abbreviation: Eur J Nucl Med Mol Imaging Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer-Verlag Berlin, 2002-
مواضيع طبية MeSH: Astrocytes* , Clozapine*/metabolism , Clozapine*/pharmacology, Animals ; Fluorodeoxyglucose F18/metabolism ; Glucose/metabolism ; Glutamic Acid/metabolism ; Glutamic Acid/pharmacology ; Humans ; Male ; Positron-Emission Tomography ; Rats ; Rats, Wistar
مستخلص: Purpose: Advances in functional imaging allowed us to visualize brain glucose metabolism in vivo and non-invasively with [ 18 F]fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) imaging. In the past decades, FDG-PET has been instrumental in the understanding of brain function in health and disease. The source of the FDG-PET signal has been attributed to neuronal uptake, with hypometabolism being considered as a direct index of neuronal dysfunction or death. However, other brain cells are also metabolically active, including astrocytes. Based on the astrocyte-neuron lactate shuttle hypothesis, the activation of the glutamate transporter 1 (GLT-1) acts as a trigger for glucose uptake by astrocytes. With this in mind, we investigated glucose utilization changes after pharmacologically downregulating GLT-1 with clozapine (CLO), an anti-psychotic drug.
Methods: Adult male Wistar rats (control, n = 14; CLO, n = 12) received CLO (25/35 mg kg -1 ) for 6 weeks. CLO effects were evaluated in vivo with FDG-PET and cortical tissue was used to evaluate glutamate uptake and GLT-1 and GLAST levels. CLO treatment effects were also assessed in cortical astrocyte cultures (glucose and glutamate uptake, GLT-1 and GLAST levels) and in cortical neuronal cultures (glucose uptake).
Results: CLO markedly reduced in vivo brain glucose metabolism in several brain areas, especially in the cortex. Ex vivo analyses demonstrated decreased cortical glutamate transport along with GLT-1 mRNA and protein downregulation. In astrocyte cultures, CLO decreased GLT-1 density as well as glutamate and glucose uptake. By contrast, in cortical neuronal cultures, CLO did not affect glucose uptake.
Conclusion: This work provides in vivo demonstration that GLT-1 downregulation induces astrocyte-dependent cortical FDG-PET hypometabolism-mimicking the hypometabolic signature seen in people developing dementia-and adds further evidence that astrocytes are key contributors of the FDG-PET signal.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E, et al. Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA. 2003;100:4879–84. https://doi.org/10.1073/pnas.0831078100 . (PMID: 10.1073/pnas.083107810012668764153649)
Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci. 2006;24:1687–94. https://doi.org/10.1111/j.1460-9568.2006.05056.x . (PMID: 10.1111/j.1460-9568.2006.05056.x17004932)
Supplie LM, Duking T, Campbell G, Diaz F, Moraes CT, Gotz M, et al. Respiration-deficient astrocytes survive as glycolytic cells in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2017;37:4231–42. https://doi.org/10.1523/JNEUROSCI.0756-16.2017 . (PMID: 10.1523/JNEUROSCI.0756-16.2017)
Leino RL, Gerhart DZ, van Bueren AM, McCall AL, Drewes LR. Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain. J Neurosci Res. 1997;49:617–26. https://doi.org/10.1002/(SICI)1097-4547(19970901)49:5%3c617::AID-JNR12%3e3.0.CO;2-S . (PMID: 10.1002/(SICI)1097-4547(19970901)49:5<617::AID-JNR12>3.0.CO;2-S9302083)
Pellerin L, Magistretti PJ. Sweet sixteen for ANLS. J Cereb Blood Flow Metab. 2012;32:1152–66. https://doi.org/10.1038/jcbfm.2011.149 . (PMID: 10.1038/jcbfm.2011.14922027938)
Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, et al. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci. 1998;20:291–9. (PMID: 10.1159/000017324)
Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA. 1994;91:10625–9. https://doi.org/10.1073/pnas.91.22.10625 . (PMID: 10.1073/pnas.91.22.10625793800345074)
Takahashi S, Driscoll BF, Law MJ, Sokoloff L. Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci USA. 1995;92:4616–20. (PMID: 10.1073/pnas.92.10.4616)
Pellerin L, Magistretti PJ. Glutamate uptake stimulates Na+, K+-ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain. J Neurochem. 1997;69:2132–7. https://doi.org/10.1046/j.1471-4159.1997.69052132.x . (PMID: 10.1046/j.1471-4159.1997.69052132.x9349559)
Schurr A, Miller JJ, Payne RS, Rigor BM. An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1999;19:34–9. (PMID: 10.1523/JNEUROSCI.19-01-00034.1999)
Bouzier-Sore AK, Voisin P, Canioni P, Magistretti PJ, Pellerin L. Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2003;23:1298–306. https://doi.org/10.1097/01.WCB.0000091761.61714.25 . (PMID: 10.1097/01.WCB.0000091761.61714.25)
Nehlig A, Wittendorp-Rechenmann E, Lam CD. Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: high-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2004;24:1004–14. https://doi.org/10.1097/01.WCB.0000128533.84196.D8 . (PMID: 10.1097/01.WCB.0000128533.84196.D8)
Barros LF, Courjaret R, Jakoby P, Loaiza A, Lohr C, Deitmer JW. Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices. Glia. 2009;57:962–70. https://doi.org/10.1002/glia.20820 . (PMID: 10.1002/glia.2082019062182)
Chuquet J, Quilichini P, Nimchinsky EA, Buzsaki G. Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2010;30:15298–303. https://doi.org/10.1523/JNEUROSCI.0762-10.2010 . (PMID: 10.1523/JNEUROSCI.0762-10.2010)
Bittner CX, Valdebenito R, Ruminot I, Loaiza A, Larenas V, Sotelo-Hitschfeld T, et al. Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011;31:4709–13. https://doi.org/10.1523/JNEUROSCI.5311-10.2011 . (PMID: 10.1523/JNEUROSCI.5311-10.2011)
Jakoby P, Schmidt E, Ruminot I, Gutierrez R, Barros LF, Deitmer JW. Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices. Cereb Cortex. 2014;24:222–31. https://doi.org/10.1093/cercor/bhs309 . (PMID: 10.1093/cercor/bhs30923042735)
Cholet N, Pellerin L, Welker E, Lacombe P, Seylaz J, Magistretti P, et al. Local injection of antisense oligonucleotides targeted to the glial glutamate transporter GLAST decreases the metabolic response to somatosensory activation. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2001;21:404–12. https://doi.org/10.1097/00004647-200104000-00009 . (PMID: 10.1097/00004647-200104000-00009)
Voutsinos-Porche B, Bonvento G, Tanaka K, Steiner P, Welker E, Chatton JY, et al. Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron. 2003;37:275–86. https://doi.org/10.1016/s0896-6273(02)01170-4 . (PMID: 10.1016/s0896-6273(02)01170-412546822)
Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65:1–105. (PMID: 10.1016/S0301-0082(00)00067-8)
Zhou Y, Danbolt NC. GABA and glutamate transporters in brain. Front Endocrinol. 2013;4:165. https://doi.org/10.3389/fendo.2013.00165 . (PMID: 10.3389/fendo.2013.00165)
Dienel GA. Brain glucose metabolism: integration of energetics with function. Physiol Rev. 2019;99:949–1045. https://doi.org/10.1152/physrev.00062.2017 . (PMID: 10.1152/physrev.00062.201730565508)
Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. Measurement of local cerebral glucose metabolism in man with 18F-2-fluoro-2-deoxy-d-glucose. Acta Neurol Scand Suppl. 1977;64:190–1. (PMID: 268783)
Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6:371–88. https://doi.org/10.1002/ana.410060502 . (PMID: 10.1002/ana.410060502117743)
Magistretti PJ, Pellerin L. The contribution of astrocytes to the 18F-2-deoxyglucose signal in PET activation studies. Mol Psychiatry. 1996;1:445–52. (PMID: 9154245)
Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci. 1999;354:1155–63. https://doi.org/10.1098/rstb.1999.0471 . (PMID: 10.1098/rstb.1999.0471104661431692634)
Bonvento G, Sibson N, Pellerin L. Does glutamate image your thoughts? Trends Neurosci. 2002;25:359–64. https://doi.org/10.1016/s0166-2236(02)02168-9 . (PMID: 10.1016/s0166-2236(02)02168-912079764)
Figley CR, Stroman PW. The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci. 2011;33:577–88. https://doi.org/10.1111/j.1460-9568.2010.07584.x . (PMID: 10.1111/j.1460-9568.2010.07584.x21314846)
Sestini S. The neural basis of functional neuroimaging signal with positron and single-photon emission tomography. Cellular and molecular life sciences : CMLS. 2007;64:1778–84. https://doi.org/10.1007/s00018-007-7056-4 . (PMID: 10.1007/s00018-007-7056-417415517)
Garcia-Caceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B, et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell. 2016;166:867–80. https://doi.org/10.1016/j.cell.2016.07.028 . (PMID: 10.1016/j.cell.2016.07.028275185628961449)
Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim HI, et al. [18F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci. 2017;20:393–5. https://doi.org/10.1038/nn.4492 . (PMID: 10.1038/nn.4492281352415378483)
Iaccarino L, Sala A, Caminiti SP, Perani D. The emerging role of PET imaging in dementia. F1000Res. 2017;6:1830. doi: https://doi.org/10.12688/f1000research.11603.1 .
Zetterberg H, Bendlin BB. Biomarkers for Alzheimer’s disease-preparing for a new era of disease-modifying therapies. Mol Psychiatry. 2021;26:296–308. https://doi.org/10.1038/s41380-020-0721-9 . (PMID: 10.1038/s41380-020-0721-932251378)
Perani D, Iaccarino L, Jacobs AH, Group IBIW. Application of advanced brain positron emission tomography-based molecular imaging for a biological framework in neurodegenerative proteinopathies. Alzheimers Dement (Amst). 2019;11:327–32. https://doi.org/10.1016/j.dadm.2019.02.004 . (PMID: 10.1016/j.dadm.2019.02.004)
Chetelat G, Arbizu J, Barthel H, Garibotto V, Law I, Morbelli S, et al. Amyloid-PET and (18)F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. The Lancet Neurology. 2020;19:951–62. https://doi.org/10.1016/S1474-4422(20)30314-8 . (PMID: 10.1016/S1474-4422(20)30314-833098804)
Melone M, Vitellaro-Zuccarello L, Vallejo-Illarramendi A, Perez-Samartin A, Matute C, Cozzi A, et al. The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine. Mol Psychiatry. 2001;6:380–6. https://doi.org/10.1038/sj.mp.4000880 . (PMID: 10.1038/sj.mp.400088011443521)
Vallejo-Illarramendi A, Torres-Ramos M, Melone M, Conti F, Matute C. Clozapine reduces GLT-1 expression and glutamate uptake in astrocyte cultures. Glia. 2005;50:276–9. https://doi.org/10.1002/glia.20172 . (PMID: 10.1002/glia.2017215739191)
Terry AV Jr, Hill WD, Parikh V, Waller JL, Evans DR, Mahadik SP. Differential effects of haloperidol, risperidone, and clozapine exposure on cholinergic markers and spatial learning performance in rats. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2003;28:300–9. https://doi.org/10.1038/sj.npp.1300039 . (PMID: 10.1038/sj.npp.1300039)
Melone M, Bragina L, Conti F. Clozapine-induced reduction of glutamate transport in the frontal cortex is not mediated by GLAST and EAAC1. Mol Psychiatry. 2003;8:12–3. https://doi.org/10.1038/sj.mp.4001193 . (PMID: 10.1038/sj.mp.400119312556903)
Cremers TI, Flik G, Hofland C, Stratford RE Jr. Microdialysis evaluation of clozapine and N-desmethylclozapine pharmacokinetics in rat brain. Drug metabolism and disposition: the biological fate of chemicals. 2012;40:1909–16. https://doi.org/10.1124/dmd.112.045682 . (PMID: 10.1124/dmd.112.045682)
Naheed M, Green B. Focus on clozapine. Curr Med Res Opin. 2001;17:223–9. https://doi.org/10.1185/0300799039117069 . (PMID: 10.1185/030079903911706911900316)
Bellaver B, Rocha AS, Souza DG, Leffa DT, De Bastiani MA, Schu G, et al. Activated peripheral blood mononuclear cell mediators trigger astrocyte reactivity. Brain Behav Immun. 2019;80:879–88. https://doi.org/10.1016/j.bbi.2019.05.041 . (PMID: 10.1016/j.bbi.2019.05.04131176000)
Schu G, Brum WS, Rodrigues YE, Cesar de Azeredo J, Pascoal TA, Benedet AL, et al. Stable brain PET metabolic networks using a multiple sampling scheme. bioRxiv. 2021:2021.03.16.435674. doi: https://doi.org/10.1101/2021.03.16.435674 .
Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059–69. https://doi.org/10.1016/j.neuroimage.2009.10.003 . (PMID: 10.1016/j.neuroimage.2009.10.00319819337)
Almeida RF, Comasseto DD, Ramos DB, Hansel G, Zimmer ER, Loureiro SO, et al. Guanosine anxiolytic-like effect involves adenosinergic and glutamatergic neurotransmitter systems. Mol Neurobiol. 2017;54:423–36. https://doi.org/10.1007/s12035-015-9660-x . (PMID: 10.1007/s12035-015-9660-x26742520)
Nunez J. Primary culture of hippocampal neurons from P0 newborn rats. Journal of visualized experiments :JoVE. 2008. doi: https://doi.org/10.3791/895.
Taxt T, Storm-Mathisen J. Uptake of D-aspartate and L-glutamate in excitatory axon terminals in hippocampus: autoradiographic and biochemical comparison with gamma-aminobutyrate and other amino acids in normal rats and in rats with lesions. Neuroscience. 1984;11:79–100. (PMID: 10.1016/0306-4522(84)90215-X)
Davies LP, Johnston GA. Uptake and release of D- and L-aspartate by rat brain slices. J Neurochem. 1976;26:1007–14. https://doi.org/10.1111/j.1471-4159.1976.tb06485.x . (PMID: 10.1111/j.1471-4159.1976.tb06485.x1271059)
Debernardi R, Magistretti PJ, Pellerin L. Trans-inhibition of glutamate transport prevents excitatory amino acid-induced glycolysis in astrocytes. Brain Res. 1999;850:39–46. https://doi.org/10.1016/s0006-8993(99)02022-3 . (PMID: 10.1016/s0006-8993(99)02022-310629746)
Bellaver B, Dos Santos JP, Leffa DT, Bobermin LD, Roppa PHA, da Silva Torres IL, et al. Systemic inflammation as a driver of brain injury: the astrocyte as an emerging player. Mol Neurobiol. 2018;55:2685–95. https://doi.org/10.1007/s12035-017-0526-2 . (PMID: 10.1007/s12035-017-0526-228421541)
Souza DG, Bellaver B, Hansel G, Arus BA, Bellaver G, Longoni A, et al. Characterization of amino acid profile and enzymatic activity in adult rat astrocyte cultures. Neurochem Res. 2016;41:1578–86. https://doi.org/10.1007/s11064-016-1871-7 . (PMID: 10.1007/s11064-016-1871-726915106)
Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. 2003;463:3–33. https://doi.org/10.1016/s0014-2999(03)01272-x . (PMID: 10.1016/s0014-2999(03)01272-x12600700)
Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1995;15:1835–53. (PMID: 10.1523/JNEUROSCI.15-03-01835.1995)
Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433:73–7. https://doi.org/10.1038/nature03180 . (PMID: 10.1038/nature0318015635412)
Xiang X, Wind K, Wiedemann T, Blume T, Shi Y, Briel N, et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Science translational medicine. 2021;13:eabe5640. doi: https://doi.org/10.1126/scitranslmed.abe5640 .
Gavillet M, Allaman I, Magistretti PJ. Modulation of astrocytic metabolic phenotype by proinflammatory cytokines. Glia. 2008;56:975–89. https://doi.org/10.1002/glia.20671 . (PMID: 10.1002/glia.2067118383346)
Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry. 2005;10:79–104. https://doi.org/10.1038/sj.mp.4001556 . (PMID: 10.1038/sj.mp.400155615289815)
Stepnicki P, Kondej M, Kaczor AA. Current concepts and treatments of schizophrenia. Molecules. 2018;23. doi: https://doi.org/10.3390/molecules23082087 .
Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA. 1998;95:316–21. https://doi.org/10.1073/pnas.95.1.316 . (PMID: 10.1073/pnas.95.1.316941937318211)
Scremin OU, Jenden DJ. Acetylcholine turnover and release: the influence of energy metabolism and systemic choline availability. Prog Brain Res. 1993;98:191–5. https://doi.org/10.1016/s0079-6123(08)62398-5 . (PMID: 10.1016/s0079-6123(08)62398-58248508)
Rothman DL, Sibson NR, Hyder F, Shen J, Behar KL, Shulman RG. In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics. Philos Trans R Soc Lond B Biol Sci. 1999;354:1165–77. https://doi.org/10.1098/rstb.1999.0472 . (PMID: 10.1098/rstb.1999.0472104661441692640)
Rothman DL, Behar KL, Hyder F, Shulman RG. In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev Physiol. 2003;65:401–27. https://doi.org/10.1146/annurev.physiol.65.092101.142131 . (PMID: 10.1146/annurev.physiol.65.092101.14213112524459)
Chen AT, Nasrallah HA. Neuroprotective effects of the second generation antipsychotics. Schizophr Res. 2019;208:1–7. https://doi.org/10.1016/j.schres.2019.04.009 . (PMID: 10.1016/j.schres.2019.04.00930982644)
Lundberg M, Curbo S, Bohman H, Agartz I, Ogren SO, Patrone C, et al. Clozapine protects adult neural stem cells from ketamine-induced cell death in correlation with decreased apoptosis and autophagy. Bioscience reports. 2020;40. 10.1042/BSR20193156.
Bastianetto S, Danik M, Mennicken F, Williams S, Quirion R. Prototypical antipsychotic drugs protect hippocampal neuronal cultures against cell death induced by growth medium deprivation. BMC Neurosci. 2006;7:28. https://doi.org/10.1186/1471-2202-7-28 . (PMID: 10.1186/1471-2202-7-28165738311448194)
Stanisavljevic A, Peric I, Bernardi RE, Gass P, Filipovic D. Clozapine increased c-Fos protein expression in several brain subregions of socially isolated rats. Brain Res Bull. 2019;152:35–44. https://doi.org/10.1016/j.brainresbull.2019.07.005 . (PMID: 10.1016/j.brainresbull.2019.07.00531299320)
Berti V, Mosconi L, Pupi A. Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin. 2014;9:129–40. https://doi.org/10.1016/j.cpet.2013.10.006 . (PMID: 10.1016/j.cpet.2013.10.00624772054)
Conley RR, Kelly DL. Management of treatment resistance in schizophrenia. Biol Psychiat. 2001;50:898–911. https://doi.org/10.1016/s0006-3223(01)01271-9 . (PMID: 10.1016/s0006-3223(01)01271-911743944)
Cohen RM, Nordahl TE, Semple WE, Andreason P, Litman RE, Pickar D. The brain metabolic patterns of clozapine- and fluphenazine-treated patients with schizophrenia during a continuous performance task. Arch Gen Psychiatry. 1997;54:481–6. (PMID: 10.1001/archpsyc.1997.01830170107014)
Molina V, Sanz J, Sarramea F, Palomo T. Marked hypofrontality in clozapine-responsive patients. Pharmacopsychiatry. 2007;40:157–62. https://doi.org/10.1055/s-2007-984399 . (PMID: 10.1055/s-2007-98439917694479)
Molina V, Gispert JD, Reig S, Sanz J, Pascau J, Santos A, et al. Cerebral metabolic changes induced by clozapine in schizophrenia and related to clinical improvement. Psychopharmacology. 2005;178:17–26. https://doi.org/10.1007/s00213-004-1981-9 . (PMID: 10.1007/s00213-004-1981-915365682)
فهرسة مساهمة: Keywords: Astrocytes; Clozapine; FDG-PET; GLT-1; Glucose; Glutamate
المشرفين على المادة: 0Z5B2CJX4D (Fluorodeoxyglucose F18)
3KX376GY7L (Glutamic Acid)
IY9XDZ35W2 (Glucose)
J60AR2IKIC (Clozapine)
تواريخ الأحداث: Date Created: 20220205 Date Completed: 20220525 Latest Revision: 20220831
رمز التحديث: 20221213
DOI: 10.1007/s00259-022-05682-3
PMID: 35122511
قاعدة البيانات: MEDLINE
الوصف
تدمد:1619-7089
DOI:10.1007/s00259-022-05682-3