دورية أكاديمية

Polymerase chain reaction and loop-mediated isothermal amplification targeting lic13162, lic20239, and lipL32 genes for leptospirosis diagnosis.

التفاصيل البيبلوغرافية
العنوان: Polymerase chain reaction and loop-mediated isothermal amplification targeting lic13162, lic20239, and lipL32 genes for leptospirosis diagnosis.
المؤلفون: Pacce VD; Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil. violettapacce@gmail.com.; Laboratório de Biologia Molecular, Departamento de Engenharia de Bioprocessos E Biotecnologia, Universidade Federal Do Paraná, Curitiba, PR, 81280330, Brazil. violettapacce@gmail.com., Souza MN; Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil, Canoas, RS, Brazil., de Oliveira NR; Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil., Kremer FS; Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil., Jorge S; Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil., Ikuta N; Simbios Biotecnologia, Cachoeirinha, RS, Brazil., Lunge VR; Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil, Canoas, RS, Brazil.; Simbios Biotecnologia, Cachoeirinha, RS, Brazil., Dellagostin OA; Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil.
المصدر: Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] [Braz J Microbiol] 2022 Jun; Vol. 53 (2), pp. 1029-1037. Date of Electronic Publication: 2022 Feb 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Publishing Country of Publication: Brazil NLM ID: 101095924 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1678-4405 (Electronic) Linking ISSN: 15178382 NLM ISO Abbreviation: Braz J Microbiol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2019- : Switzerland, AG : Springer International Publishing
Original Publication: Rio de Janeiro, RJ, Brasil : Sociedade Brasileira de Microbiologia
مواضيع طبية MeSH: Leptospira*/genetics , Leptospirosis*/diagnosis , Leptospirosis*/microbiology, Humans ; Molecular Diagnostic Techniques ; Nucleic Acid Amplification Techniques ; Real-Time Polymerase Chain Reaction/methods ; Sensitivity and Specificity
مستخلص: Leptospirosis is a zoonotic disease caused by pathogenic species of Leptospira. Due to the similarity with clinical signs of other febrile diseases, early diagnosis remains challenging. Real-time PCR has been used for direct detection of Leptospira, but it requires thermocyclers and highly trained personnel. Loop-mediated isothermal amplification (LAMP) is a simple and rapid DNA-based assay. Therefore, here we have developed PCR and LAMP assays targeting two novel genes, lic13162 and lic20239, and also lipL32 gene to detect pathogenic Leptospira. Analytical and diagnostic performances were compared with bacterial isolates (including different Leptospira species and serovars) and clinical samples. The results demonstrated that PCR assays targeting lic13162 and lic20239 were successful to amplify Leptospira, but LAMP not. However, both PCR and LAMP targeting lipL32 could detect pathogenic Leptospira. LAMP lipL32 could be performed in 30 min with a detection limit of 156 cells/mL. Diagnostic performance of lipL32-LAMP presented 84.2% sensitivity and 93.2% specificity. In conclusion, lipL32 PCR and LAMP are effective methods to detect pathogenic Leptospira directly from clinical samples.
(© 2022. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.)
References: Haake PN, Levett DA. Leptospirosis in humans. Leptospira and Leptospirosis, 2015.
Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS et al (2015) Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis 9:e0003898. https://doi.org/10.1371/journal.pntd.0003898. (PMID: 10.1371/journal.pntd.0003898263791434574773)
Vijayachari P. Leptospirosis: Laboratory Manual ICMR WHO. 2007.
McBride AJA, Athanazio DA, Reis MG, Ko AI (2005) Leptospirosis. Curr Opin Infect Dis 18:376–386. (PMID: 10.1097/01.qco.0000178824.05715.2c16148523)
Sengupta M, Prabhakar AP, Satyendra S, Thambu D, Abraham O, Balaji V et al (2017) Utility of loop-mediated isothermal amplification assay, polymerase chain reaction, and elisa for diagnosis of leptospirosis in South Indian patients. J Glob Infect Dis 9:3. https://doi.org/10.4103/0974-777X.192967. (PMID: 10.4103/0974-777X.192967282506185330041)
Toyokawa T, Ohnishi M, Koizumi N (2011) Diagnosis of acute leptospirosis. Expert Rev Anti Infect Ther 9:111–121. https://doi.org/10.1586/eri.10.151. (PMID: 10.1586/eri.10.15121171882)
Chen H-W, Weissenberger G, Atkins E, Chao C-C, Suputtamongkol Y, Ching W-M (2015) Highly sensitive loop-mediated isothermal amplification for the detection of Leptospira. Int J Bacteriol 2015:1–6. https://doi.org/10.1155/2015/147173. (PMID: 10.1155/2015/147173)
NurulNajian AB, Engku NurSyafirah EAR, Ismail N, Mohamed M, Yean CY (2016) Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira. Anal Chim Acta 903:142–8. https://doi.org/10.1016/j.aca.2015.11.015. (PMID: 10.1016/j.aca.2015.11.015)
Notomi T, Mori Y, Tomita N, Kanda H. Loop-mediated isothermal amplification (LAMP): principle , features , and future prospects 2015;53:1–5. https://doi.org/10.1007/s12275-015-4656-9 .
Nzelu CO, Kato H, Peters NC. Loop-mediated isothermal amplification (LAMP): an advanced molecular point-of-care technique for the detection of Leishmania infection. PLoS Negl Trop Dis 2019;13. https://doi.org/10.1371/journal.pntd.0007698 .
Banger S, Pal V, Tripathi NK, Goel AK. Development of a set of three real-time loop-mediated isothermal amplification (LAMP) assays for detection of Bacillus anthracis, the causative agent of anthrax. Folia Microbiol (Praha) 2021:1–10. https://doi.org/10.1007/s12223-021-00869-x .
Ashraf A, Imran M, Yaqub T, Tayyab M, Shehzad W, Mingala CN et al (2018) Development and validation of a loop-mediated isothermal amplification assay for the detection of Mycoplasma bovis in mastitic milk. Folia Microbiol (Praha) 63:373–380. https://doi.org/10.1007/s12223-017-0576-x. (PMID: 10.1007/s12223-017-0576-x)
Garg N, Sahu U, Kar S, Ahmad FJ (2021) Development of a Loop-mediated isothermal amplification (LAMP) technique for specific and early detection of Mycobacterium leprae in clinical samples. Sci Reports 11:9859. https://doi.org/10.1038/s41598-021-89304-2. (PMID: 10.1038/s41598-021-89304-2)
Yang J-L, Ma GP, Yang R, Yang S-Q, Fu L-Z, Cheng A-C et al (2010) Simple and rapid detection of Salmonella serovar Enteritidis under field conditions by loop-mediated isothermal amplification. J Appl Microbiol 109:no-no. https://doi.org/10.1111/j.1365-2672.2010.04800.x. (PMID: 10.1111/j.1365-2672.2010.04800.x)
Meng X-L, Xie X-W, Shi Y-X, Chai A-L, Ma Z-H, Li B-J (2017) Evaluation of a loop-mediated isothermal amplification assay based on hrpZ gene for rapid detection and identification of Pseudomonas syringae pv. lachrymans in cucumber leaves. J Appl Microbiol 122:441–9. https://doi.org/10.1111/jam.13356. (PMID: 10.1111/jam.1335627864860)
Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289:150–154. https://doi.org/10.1006/bbrc.2001.5921. (PMID: 10.1006/bbrc.2001.592111708792)
Mori Y, Notomi T (2009) Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother 15:62–69. https://doi.org/10.1007/s10156-009-0669-9. (PMID: 10.1007/s10156-009-0669-9193965147087713)
Barocchi MA, Ko AI, Ramos Ferrer S, Tucunduva Faria M, Galvão Reis M, Riley LW (2001) Identification of new repetitive element in Leptospira interrogans serovar copenhageni and its application to PCR-based differentiation of Leptospira serogroups. J Clin Microbiol 39:191–195. https://doi.org/10.1128/JCM.39.1.191-195.2001. (PMID: 10.1128/JCM.39.1.191-195.20011113676987700)
Oliveira TL, Rizzi C, da Cunha CEP, Dorneles J, Seixas Neto ACP, Amaral MG et al (2019) Recombinant BCG strains expressing chimeric proteins derived from Leptospira protect hamsters against leptospirosis. Vaccine 37:776–782. https://doi.org/10.1016/j.vaccine.2018.12.050. (PMID: 10.1016/j.vaccine.2018.12.05030630695)
Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L, Berg DE et al (2016) What makes a bacterial species pathogenic?: Comparative genomic analysis of the genus Leptospira. PLoS Negl Trop Dis 10:e0004403. https://doi.org/10.1371/journal.pntd.0004403. (PMID: 10.1371/journal.pntd.0004403268906094758666)
Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. https://doi.org/10.1186/1471-2105-11-119. (PMID: 10.1186/1471-2105-11-119202110232848648)
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K et al (2009) BLAST+: Architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421. (PMID: 10.1186/1471-2105-10-421200035002803857)
Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. https://doi.org/10.1093/bioinformatics/bts565. (PMID: 10.1093/bioinformatics/bts565230606103516142)
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/NAR/GKH340. (PMID: 10.1093/NAR/GKH34015034147390337)
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–21. https://doi.org/10.1093/SYSBIO/SYQ010. (PMID: 10.1093/SYSBIO/SYQ01020525638)
Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293. https://doi.org/10.1093/NAR/GKAB301. (PMID: 10.1093/NAR/GKAB301338857858265157)
Hsu YH, Chou SJ, Chang CC, Pan MJ, Yang WC, Lin CF et al (2017) Development and validation of a new loop-mediated isothermal amplification for detection of pathogenic Leptospira species in clinical materials. J Microbiol Methods 141:55–59. https://doi.org/10.1016/j.mimet.2017.07.010. (PMID: 10.1016/j.mimet.2017.07.01028756184)
Hamond C, Pestana CP, Rocha-de-Souza CM, Cunha LER, Brandão FZ, Medeiros MA et al (2015) Presence of leptospires on genital tract of mares with reproductive problems. Vet Microbiol 179:264–269. https://doi.org/10.1016/j.vetmic.2015.06.014. (PMID: 10.1016/j.vetmic.2015.06.01426211968)
Åsberg A, Johnsen H, Mikkelsen G, Hov GG (2016) Using probit regression to disclose the analytical performance of qualitative and semi-quantitative tests. Scand J Clin Lab Invest 76:515–519. https://doi.org/10.1080/00365513.2016.1202446. (PMID: 10.1080/00365513.2016.120244627385434)
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159. https://doi.org/10.2307/2529310. (PMID: 10.2307/2529310843571)
Bourhy P, Bremont S, Zinini F, Giry C, Picardeau M (2011) Comparison of real-time PCR assays for detection of pathogenic Leptospira spp. in blood and identification of variations in target sequences. J Clin Microbiol 49:2154–60. https://doi.org/10.1128/JCM.02452-10. (PMID: 10.1128/JCM.02452-10214713363122738)
Ohtsuka K, Yanagawa K, Takatori K, Hara-Kudo Y (2005) Detection of Salmonella enterica in naturally contaminated liquid eggs by loop-mediated isothermal amplification, and characterization of Salmonella isolates. Appl Environ Microbiol 71:6730–6735. https://doi.org/10.1128/AEM.71.11.6730-6735.2005. (PMID: 10.1128/AEM.71.11.6730-6735.2005162697031287618)
Goay YX, Chin KL, Tan CLL, Yeoh CY, Ja’afar JN, Zaidah AR, et al. Identification of five novel salmonella typhi-specific genes as markers for diagnosis of typhoid fever using single-gene target PCR assays. Biomed Res Int 2016;2016. https://doi.org/10.1155/2016/8905675 .
Shrivastava AK, Panda S, Kumar S, Sahu PS (2020) Two novel genomic DNA sequences as common diagnostic targets to detect Cryptosporidium hominis and Cryptosporidium parvum: development of quantitative polymerase chain reaction assays, and clinical evaluation. Indian J Med Microbiol 38:430–439. https://doi.org/10.4103/ijmm.IJMM_20_114. (PMID: 10.4103/ijmm.IJMM_20_11433154258)
Di Azevedo M, Lilenbaum W (2021) An overview on the molecular diagnosis of animal leptospirosis. Lett Appl Microbiol 496(5):508–72. https://doi.org/10.1111/lam.13442. (PMID: 10.1111/lam.13442)
Hardinge P, Murray JAH (2019) Reduced false positives and improved reporting of loop-mediated isothermal amplification using quenched fluorescent primers. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-43817-z. (PMID: 10.1038/s41598-019-43817-z)
Wong YP, Othman S, Lau YL, Radu S, Chee HY (2018) Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. J Appl Microbiol 124:626–643. https://doi.org/10.1111/jam.13647. (PMID: 10.1111/jam.1364729165905)
Gao X, Sun B, Guan Y (2019) Pullulan reduces the non-specific amplification of loop-mediated isothermal amplification (LAMP). Anal Bioanal Chem 411:1211–1218. https://doi.org/10.1007/s00216-018-1552-2. (PMID: 10.1007/s00216-018-1552-230617407)
Watts MR, James G, Sultana Y, Ginn AN, Outhred AC, Kong F et al (2014) A loop-mediated isothermal amplification (LAMP) assay for Strongyloides stercoralis in stool that uses a visual detection method with SYTO-82 fluorescent dye. Am J Trop Med Hyg 90:306–311. https://doi.org/10.4269/ajtmh.13-0583. (PMID: 10.4269/ajtmh.13-0583243235133919238)
Kollenda H, Hagen RM, Hanke M, Rojak S, Hinz R, Wassill L et al (2018) Poor diagnostic performance of a species-specific loop-mediated isothermal amplification (LAMP) platform for malaria. Eur J Microbiol Immunol 8:112–118. https://doi.org/10.1556/1886.2018.00020. (PMID: 10.1556/1886.2018.00020)
Das A, Babiuk S, McIntosh MT (2012) Development of a loop-mediated isothermal amplification assay for rapid detection of capripoxviruses. J Clin Microbiol 50:1613–1620. https://doi.org/10.1128/JCM.06796-11. (PMID: 10.1128/JCM.06796-11223575043347125)
Hansen ZR, Knaus BJ, Tabima JF, Press CM, Judelson HS, Grünwald NJ et al (2016) Loop-mediated isothermal amplification for detection of the tomato and potato late blight pathogen, Phytophthorainfestans. J Appl Microbiol 120:1010–1020. https://doi.org/10.1111/jam.13079. (PMID: 10.1111/jam.1307926820117)
Yang Q, Domesle KJ, Ge B (2018) Loop-mediated isothermal amplification for salmonella detection in food and feed: current applications and future directions. Foodborne Pathog Dis. https://doi.org/10.1089/fpd.2018.2445. (PMID: 10.1089/fpd.2018.2445304891506004089)
Zhang L, Pan ZM, Geng SZ, Chen X, Liu ZY, Zhao F et al (2012) A loop-mediated isothermal amplification method targets the HisJ gene for the detection of foodborne Salmonella. Eur Food Res Technol 234:1055–62. https://doi.org/10.1007/s00217-012-1725-8. (PMID: 10.1007/s00217-012-1725-8)
Khorosheva EM, Karymov MA, Selck DA, Ismagilov RF (2016) Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: validation using digital real-time RT-LAMP. Nucleic Acids Res 44:e10–e10. https://doi.org/10.1093/nar/gkv877. (PMID: 10.1093/nar/gkv87726358811)
Wang D, Yu J, Wang Y, Zhang M, Li P, Liu M et al (2020) Development of a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay for detection of African swine fever virus (ASFV). J Virol Methods 276:113775. https://doi.org/10.1016/j.jviromet.2019.113775. (PMID: 10.1016/j.jviromet.2019.11377531726114)
Giglioti R, Bassetto CC, Okino CH, de Oliveira HN, de Sena Oliveira MC (2019) Development of a loop-mediated isothermal amplification (LAMP) assay for the detection of Anaplasma marginale. Exp Appl Acarol 77:65–72. https://doi.org/10.1007/s10493-018-0327-y. (PMID: 10.1007/s10493-018-0327-y30478537)
Sonthayanon P, Chierakul W, Wuthiekanun V, Thaipadungpanit J, Kalambaheti T, Boonsilp S et al (2011) Accuracy of loop-mediated isothermal amplification for diagnosis of human leptospirosis in Thailand. Am J Trop Med Hyg 84:614–620. https://doi.org/10.4269/ajtmh.2011.10-0473. (PMID: 10.4269/ajtmh.2011.10-0473214600193062458)
Gentilini F, Zanoni RG, Zambon E, Turba ME (2017) A comparison of the reliability of two gene targets in loop-mediated isothermal amplification assays for detecting leptospiral DNA in canine urine. J Vet Diagn Invest 29:100–104. https://doi.org/10.1177/1040638716672503. (PMID: 10.1177/104063871667250328074711)
Khan M, Wang R, Li B, Liu P, Weng Q, Chen Q (2018) Comparative evaluation of the LAMP assay and PCR-based assays for the rapid detection of Alternaria solani. Front Microbiol 9:1–11. https://doi.org/10.3389/fmicb.2018.02089. (PMID: 10.3389/fmicb.2018.02089)
فهرسة مساهمة: Keywords: Accuracy; Diagnostic; Infectious diseases; LAMP; PCR; Point-of-care
SCR Protocol: LAMP assay
تواريخ الأحداث: Date Created: 20220206 Date Completed: 20220602 Latest Revision: 20230206
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9151938
DOI: 10.1007/s42770-022-00698-1
PMID: 35124771
قاعدة البيانات: MEDLINE
الوصف
تدمد:1678-4405
DOI:10.1007/s42770-022-00698-1