دورية أكاديمية

Evidence for Paracrine Protective Role of Exogenous αA-Crystallin in Retinal Ganglion Cells.

التفاصيل البيبلوغرافية
العنوان: Evidence for Paracrine Protective Role of Exogenous αA-Crystallin in Retinal Ganglion Cells.
المؤلفون: Nath M; Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105., Sluzala ZB; Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105., Phadte AS; Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105.; Currently in Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107., Shan Y; Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105., Myers AM; Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105., Fort PE; Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105 patricef@umich.edu.; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105.
المصدر: ENeuro [eNeuro] 2022 Mar 04; Vol. 9 (2). Date of Electronic Publication: 2022 Mar 04 (Print Publication: 2022).
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Society for Neuroscience Country of Publication: United States NLM ID: 101647362 Publication Model: Electronic-Print Cited Medium: Internet ISSN: 2373-2822 (Electronic) Linking ISSN: 23732822 NLM ISO Abbreviation: eNeuro Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [Washington, DC] : Society for Neuroscience, [2014]-
مواضيع طبية MeSH: Crystallins*/chemistry , Crystallins*/genetics , Crystallins*/metabolism, Molecular Chaperones/metabolism ; Recombinant Proteins/metabolism ; Retinal Ganglion Cells/metabolism
مستخلص: Expression and secretion of neurotrophic factors have long been known as a key mechanism of neuroglial interaction in the central nervous system. In addition, several other intrinsic neuroprotective pathways have been described, including those involving small heat shock proteins such as α-crystallins. While initially considered as a purely intracellular mechanism, both αA-crystallins and αB-crystallins have been recently reported to be secreted by glial cells. While an anti-apoptotic effect of such secreted αA-crystallin has been suggested, its regulation and protective potential remain unclear. We recently identified residue threonine 148 (T148) and its phosphorylation as a critical regulator of αA-crystallin intrinsic neuroprotective function. In the current study, we explored how mutation of this residue affected αA-crystallin chaperone function, secretion, and paracrine protective function using primary glial and neuronal cells. After demonstrating the paracrine protective effect of αA-crystallins secreted by primary Müller glial cells (MGCs), we purified and characterized recombinant αA-crystallin proteins mutated on the T148 regulatory residue. Characterization of the biochemical properties of these mutants revealed an increased chaperone activity of the phosphomimetic T148D mutant. Consistent with this observation, we also show that exogeneous supplementation of the phosphomimetic T148D mutant protein protected primary retinal neurons from metabolic stress despite similar cellular uptake. In contrast, the nonphosphorylatable mutant was completely ineffective. Altogether, our study demonstrates the paracrine role of αA-crystallin in the central nervous system as well as the therapeutic potential of functionally enhanced αA-crystallin recombinant proteins to prevent metabolic-stress induced neurodegeneration.
(Copyright © 2022 Nath et al.)
التعليقات: Erratum in: eNeuro. 2022 Aug 30;9(4):. (PMID: 36041825)
References: JCI Insight. 2018 Feb 22;3(4):. (PMID: 29467334)
J Comp Neurol. 2014 Apr 15;522(6):1411-43. (PMID: 24318667)
Eye (Lond). 1999 Jun;13 ( Pt 3b):403-8. (PMID: 10627817)
J Mol Neurosci. 2008 Jul;35(3):253-8. (PMID: 18551258)
Circ Res. 2003 Feb 7;92(2):203-11. (PMID: 12574148)
J Clin Med. 2021 May 28;10(11):. (PMID: 34071438)
Biochim Biophys Acta. 2005 Jun 10;1740(3):411-20. (PMID: 15949709)
Graefes Arch Clin Exp Ophthalmol. 2015 Aug;253(8):1251-4. (PMID: 25311653)
Invest Ophthalmol Vis Sci. 2002 Dec;43(12):3735-43. (PMID: 12454045)
Mol Cell Biol. 1991 Sep;11(9):4340-9. (PMID: 1875925)
IUBMB Life. 2006 Nov;58(11):632-41. (PMID: 17085382)
Exp Eye Res. 2004 Sep;79(3):393-403. (PMID: 15336502)
PLoS One. 2017 Mar 29;12(3):e0173778. (PMID: 28355240)
Biochim Biophys Acta. 2016 Jan;1860(1 Pt B):278-86. (PMID: 26049079)
Int J Biol Macromol. 1998 May-Jun;22(3-4):271-81. (PMID: 9650082)
Invest Ophthalmol Vis Sci. 2017 Oct 1;58(12):5594-5603. (PMID: 29084332)
Invest Ophthalmol Vis Sci. 2008 Mar;49(3):1161-71. (PMID: 18326745)
Exp Eye Res. 1990 Aug;51(2):119-29. (PMID: 2387332)
Int J Mol Sci. 2020 Mar 30;21(7):. (PMID: 32235464)
Cell Mol Life Sci. 2000 Jun;57(6):899-913. (PMID: 10950306)
Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10449-53. (PMID: 1438232)
Exp Eye Res. 1996 May;62(5):499-504. (PMID: 8759518)
Invest Ophthalmol Vis Sci. 2013 Nov 19;54(12):7674-82. (PMID: 24159092)
J Biol Chem. 1999 Dec 3;274(49):34773-8. (PMID: 10574947)
PLoS One. 2013 Dec 13;8(12):e82520. (PMID: 24349305)
PLoS One. 2012;7(9):e45754. (PMID: 23049853)
Mol Med Rep. 2012 Feb;5(2):395-9. (PMID: 22052021)
Neurochem Int. 2018 May;115:69-79. (PMID: 29425965)
Int J Mol Sci. 2017 Nov 14;18(11):. (PMID: 29135941)
Histochem Cell Biol. 2012 Sep;138(3):407-18. (PMID: 22617993)
Cold Spring Harb Protoc. 2013 Jul 01;2013(7):643-52. (PMID: 23818667)
Biochim Biophys Acta. 2016 Jan;1860(1 Pt B):258-68. (PMID: 26026469)
Onco Targets Ther. 2019 May 30;12:4129-4139. (PMID: 31239701)
Biochim Biophys Acta. 2014 Feb;1843(2):309-15. (PMID: 24275510)
Prog Retin Eye Res. 2016 Mar;51:1-40. (PMID: 26113209)
Invest Ophthalmol Vis Sci. 2011 Aug 24;52(9):5034-42. (PMID: 21467180)
Int J Clin Exp Med. 2015 Mar 15;8(3):3349-59. (PMID: 26064225)
PLoS One. 2016 Nov 16;11(11):e0166450. (PMID: 27851782)
Ophthalmic Res. 2011;45(3):164-8. (PMID: 20881446)
Science. 2015 Nov 6;350(6261):674-7. (PMID: 26542570)
Prog Mol Biol Transl Sci. 2015;134:169-201. (PMID: 26310155)
Exp Eye Res. 2008 Feb;86(2):355-65. (PMID: 18191123)
Int J Mol Sci. 2018 Mar 22;19(4):. (PMID: 29565290)
Invest Ophthalmol Vis Sci. 1996 Oct;37(11):2276-84. (PMID: 8843924)
Neurobiol Dis. 2007 Dec;28(3):293-303. (PMID: 17904375)
Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):884-9. (PMID: 9023351)
Diabetes. 2015 Oct;64(10):3554-63. (PMID: 26068541)
Life Sci. 2014 Aug 28;111(1-2):42-6. (PMID: 25064825)
J Fr Ophtalmol. 2020 Oct;43(8):718-726. (PMID: 32631692)
Subcell Biochem. 2019;93:439-460. (PMID: 31939160)
Nat Methods. 2012 Jul;9(7):671-5. (PMID: 22930834)
Cells. 2020 Jul 22;9(8):. (PMID: 32708020)
Int J Ophthalmol. 2016 Jul 18;9(7):955-66. (PMID: 27500100)
Invest Ophthalmol Vis Sci. 2009 Aug;50(8):3869-75. (PMID: 19279307)
Cell Death Dis. 2010;1:e31. (PMID: 21364639)
Mol Neurobiol. 2013 Dec;48(3):819-28. (PMID: 23709342)
Prog Retin Eye Res. 2016 May;52:22-46. (PMID: 27017896)
Neurochem Res. 2008 Aug;33(8):1466-74. (PMID: 18273703)
Mol Cell Proteomics. 2009 Apr;8(4):767-79. (PMID: 19049959)
معلومات مُعتمدة: P30 DK020572 United States DK NIDDK NIH HHS; P30 EY007003 United States EY NEI NIH HHS
فهرسة مساهمة: Keywords: chaperone; metabolic stress; neuroprotection; recombinant proteins; αA-crystallin
المشرفين على المادة: 0 (Crystallins)
0 (Molecular Chaperones)
0 (Recombinant Proteins)
تواريخ الأحداث: Date Created: 20220216 Date Completed: 20220404 Latest Revision: 20220830
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8906792
DOI: 10.1523/ENEURO.0045-22.2022
PMID: 35168949
قاعدة البيانات: MEDLINE
الوصف
تدمد:2373-2822
DOI:10.1523/ENEURO.0045-22.2022