دورية أكاديمية

New tools suggest a middle Jurassic origin for mammalian endothermy: Advances in state-of-the-art techniques uncover new insights on the evolutionary patterns of mammalian endothermy through time: Advances in state-of-the-art techniques uncover new insights on the evolutionary patterns of mammalian endothermy through time.

التفاصيل البيبلوغرافية
العنوان: New tools suggest a middle Jurassic origin for mammalian endothermy: Advances in state-of-the-art techniques uncover new insights on the evolutionary patterns of mammalian endothermy through time: Advances in state-of-the-art techniques uncover new insights on the evolutionary patterns of mammalian endothermy through time.
المؤلفون: Newham E; School of Engineering and Materials Science, Queen Mary University of London, London, UK.; Department of Palaeontology, Institute for Geosciences, University of Bonn, Bonn, Germany., Gill PG; School of Earth Sciences, University of Bristol, Bristol, UK.; Earth Sciences Department, Natural History Museum, London, UK., Corfe IJ; Jernvall Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.; Geological Survey of Finland, Espoo, Finland.
المصدر: BioEssays : news and reviews in molecular, cellular and developmental biology [Bioessays] 2022 Apr; Vol. 44 (4), pp. e2100060. Date of Electronic Publication: 2022 Feb 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 8510851 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-1878 (Electronic) Linking ISSN: 02659247 NLM ISO Abbreviation: Bioessays Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Hoboken, N.J. : Wiley
Original Publication: Cambridge, UK : Published for the ICSU Press by Cambridge University Press, c1984-
مواضيع طبية MeSH: Biological Evolution* , Mammals*/physiology, Animals ; Fossils ; Phylogeny
مستخلص: We suggest that mammalian endothermy was established amongst Middle Jurassic crown mammals, through reviewing state-of-the-art fossil and living mammal studies. This is considerably later than the prevailing paradigm, and has important ramifications for the causes, pattern, and pace of physiological evolution amongst synapsids. Most hypotheses argue that selection for either enhanced aerobic activity, or thermoregulation was the primary driver for synapsid physiological evolution, based on a range of fossil characters that have been linked to endothermy. We argue that, rather than either alternative being the primary selective force for the entirety of endothermic evolution, these characters evolved quite independently through time, and across the mammal family tree, principally as a response to shifting environmental pressures and ecological opportunities. Our interpretations can be tested using closely linked proxies for both factors, derived from study of fossils of a range of Jurassic and Cretaceous mammaliaforms and early mammals.
(© 2022 The Authors. BioEssays published by Wiley Periodicals LLC.)
References: Benton, M. J. (2021). The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. Gondwana Research, 100, 261-289. https://doi.org/10.1016/j.gr.2020.08.003.
Clarke, A., & Fraser, K. P. P. (2004). Why does metabolism scale with temperature? Functional Ecology, 18(2), 243-251.
Oelkrug, R., Polymeropoulos, E. T., & Jastroch, M. (2015). Brown adipose tissue: Physiological function and evolutionary significance. Journal of Comparative Physiology, B, 185(6), 587-606.
Jastroch, M., & Seebacher, F. (2020). Importance of adipocyte browning in the evolution of endothermy. Philosophical Transactions of the Royal Society, B: Biological Sciences, 375, 20190134.
Hulbert, J., Pampolona, R., Buffenstein, R., & Buttemer, W. A. (2007). Life and death: Metabolic rate, membrane composition, and life span of animals. Mitochondrial Membrane Permeabilization in Cell Death, 87(4), 1175-1213.
Avaria-Llautureo, J., Hernández, C. E., Rodríguez-Serrano, E., & Venditti, C. (2019). The decoupled nature of basal metabolic rate and body temperature in endotherm evolution. Nature, 572(7771), 651-654.
Stark, G., Pincheira-Donoso, D., & Meiri, S. (2020). No evidence for the rate of living theory across the tetrapod tree of life. Global Ecology and Biogeography, 29(5), 857-884.
Kemp, T. S. (2006). The origin of mammalian endothermy: A paradigm for the evolution of complex biological structure. Zoological Journal of the Linnean Society, 147(4), 473-488.
Geiser, F., Stawski, C., Wacker, C. B., & Nowack, J. (2017). Phoenix from the Ashes: Fire, torpor, and the evolution of mammalian endothermy. Frontiers in Physiology, 8, 842.
Newham, E., Gill, P. G., Brewer, P., Benton, M. J., Fernandez, V., Gostling, N. J.. Haberthür, D., Jernvall, J., Kankanpää, T., Kallonen, A., Navarro, C., Pacureanu, A., Zeller-Plumhoff, B., Richards, K., Robson-Brown, K., Schneider, P., Suhonen, H., Tafforeau, P., Williams, K., & Corfe, I. J.. (2020). Reptile-like physiology in early Jurassic stem-mammals. Nature Communication, 11(1), 1-13.
Rodrigues, P. G., Martinelli, A. G., Schultz, C. L., Corfe, I. J., Gill, P. G., Soars, M. B., & Rayfield, E. J. (2019). Digital cranial endocast of Riograndia guaibensis (Late Triassic, Brazil) sheds light on the evolution of the brain in non-mammalian cynodonts. Historical Biology, 31(9), 1195-1212.
Benoit, J., Ruf, I., Miyamae, J. A., Fernandez, V., Rodrigues, P. G., & Rubidge, B. S. (2020) The evolution of the maxillary canal in Probainognathia (Cynodontia, Synapsida): Reassessment of the homology of the infraorbital foramen in mammalian ancestors. Journal of Mammalian Evolution, 27(3), 329-348.
Crompton, A. W., Owerkowicz, T., Bhullar, B. A., & Musinsky, C. (2017). Structure of the nasal region of non-mammalian cynodonts and mammaliaforms: Speculations on the evolution of mammalian endothermy. Journal of Vertebrate Paleontology, 37, e1269116.
Zhou, Y., Shearwin-Whyatt, L., Li, J., Song, Z., Hayakawa, T., Stevens, D., Fenelon, J. C., Peel, E., Cheng, Y., Pajpach, F., Bradley, N., Suzuki, H., Nikaido, M., Damas, J., Daish, T., Perry, T., Zhu, Z., Geng, Y., Rhie, A., Sims, Y., …. Zhang, G.. (2021). Platypus and echidna genomes reveal mammalian biology and evolution. Nature, 592(7856), 756-762.
Clarke, H., & Pörtner, O. (2010). Temperature, metabolic power and the evolution of endothermy. Biological Reviews, 85(4), 703-727.
Bennett, A., & Ruben, J. A. (1979). Endothermy and activity in vertebrates. Science, 206(4419), 649-654.
Koteja, P. (2000). Energy assimilation, parental care and the evolution of endothermy. Proceedings of the Royal Society B: Biological Sciences, 267(1442), 479-484.
Hopson, J. A. (2012). The role of foraging mode in the origin of therapsids: Implications for the origin of mammalian endothermy. Fieldiana Life and Earth Sciences, 2012(5), 126-148.
Crompton, A. W., Taylor, C. R., & Jagger, J. A. (1978). Evolution of homeothermy in mammals. Nature, 272(5651), 333-336.
Farmer, C. G. (2003). Reproduction: The adaptive significance of endothermy. The American Naturalist,162(6), 826-840.
Farmer, C. G. (2020). Parental care, destabilizing selection, and the evolution of tetrapod endothermy. Physiology, 35(3), 160-176.
Ji, Q., Luo, Z. X., Yuan, C. X., & Tabrum, A. R. (2006). A swimming mammaliaform from the middle Jurassic and ecomorphological diversification of early mammals. Science, 311(5764), 1123-1127.
Botha-Brink, J., Soares, M. B., & Martinelli, A. G. (2018). Osteohistology of late triassic prozostrodontian cynodonts from brazil. Peer J, 6, e5029.
Isler, K., & Van Schaik, C. P. (2006). Metabolic costs of brain size evolution. Biology Letters, 2(4), 557-560.
Isler, K., & van Schaik, C. P. (2009). The expensive brain: A framework for explaining evolutionary changes in brain size. Journal of Human Evolution, 57(4), 392-400.
Smaers, J. B., Rothman, R. S., Hudson, D. R., Balanoff, A. M., Beatty, B., Dechmann, D. K. N., de Vries, D., Dunn, J. C., Fleagle, J. G., Gilbert, C. C., Goswami, A., Iwaniuk, A. N., Jungers, W., Kerney, M., Ksepka, D. T., Manger, P. R., Mongle, C. S., Rohlf, F. J., Smith, N. A., Soligo, C., … Safi, K.. (2021). The evolution of mammalian brain size. Science Advances, 7(18), eabe2101. https://doi.org/10.1126/sciadv.abe2101.
Rowe, T. B., Macrini, T. E., & Luo, Z. X. (2011). Fossil evidence on origin of the mammalian brain. Science, 332(6032), 955-957.
Benoit, J., Fernandez, V., Manger, P. R., & Rubidge, B. S. (2017). Endocranial casts of pre-mammalian therapsids reveal an unexpected neurological diversity at the deep evolutionary root of mammals. Brain Behavior and Evolution, 90(4), 311-333.
Benoit, J.. Manger, P. R., & Rubidge, S. (2016). Palaeoneurological clues to the evolution of defining mammalian soft tissue traits. Scientific reports, 6(1), 1-10.
Muchlinski, M. N., Wible, J. R., Corfe, I. J., Sullivan, M., & Grant, R. A. (2020). Good vibrations: The evolution of whisking in small mammals. The Anatomical Record, 303(1), 89-99.
Taylor, C. R. (1980). Evolution of mammalian homeothermy: A two-step process? In K. Schimdt-Nielsen, L. Bolis, C.R. Taylor (Eds.). Comparative physiology: Primitive mammals (pp. 100-111). Cambridge, UK: Cambridge University Press.
Hall, M. I., Kamilar, J. M., & Kirk, E. C. (2012). Eye shape and the nocturnal bottleneck of mammals. Proceedings of the Royal Society B: Biological Sciences, 279(1749), 4921-4968.
Wu, J., Yonezawa, T., & Kishino, H. (2017). Rates of molecular evolution suggest natural history of life history traits and a Post-K-Pg nocturnal bottleneck of placentals. Current Biology, 27(19), 3025-3033.
Walls, G. L. (1942). The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science. https://doi.org/10.5962/bhl.title.7369M.
Gerkema, P., Davies, W. I., Foster, R. G., & Menaker, M. (2013). The nocturnal bottleneck and the evolution of activity patterns in mammals. Proceedings of the Royal Society B: Biological Sciences, 280, 20130508.
Angielczyk, K. D., & Schmidt, L. (2014). Nocturnality in synapsids predates the origin of mammals by over 100 million years. Proceedings of the Royal Society B: Biological Sciences, 281, 20141642.
Kim, J. W., Yang, H. J., Oel, A. P., Brooks, M. J., Jia, L., Plachetzki, D. C., Li, W., Allison, W. T., & Swaroop, A.. (2016). Recruitment of rod photoreceptors from short- wavelength-sensitive cones during the evolution of nocturnal vision in mammals. Developmental Cell, 37(6), 520-532.
Douglas, R. H., & Jeffrey, G. (2014). The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proceedings of the Royal Society B: Biological Sciences, 281, 20132995.
Davies, W. I., Collin, S. P., & Hunt, D. M. (2012). Molecular ecology and adaptation of visual photopigments in craniates. Molecular Ecology, 21(13), 3121-3158.
Schmitz, L., & Motani, R. (2011). Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science, 332(6030), 705-708.
Choiniere, J. N., Neenan, J. M., Schmitz, L., Ford, D. P., Chapelle, K. E. J., Balanoff, A. M., Sipla, J. S., Georgi, J. A., Walsh, S. A., Norell, M. A., Xu, X., Clark, J. A., & Benson, R. B. J.. (2021). Evolution of vision and hearing modalities in theropod dinosaurs. Science, 372(6542), 610-613.
Labandeira, C. C. (2005). The fossil record of insect extinction: New approaches and future directions. American Entomologist, 51(1), 14-29.
Zheng, D., Chang, S. C., Perrichot, V., Dutta, S., Rudra, A., Mu, L., Thomson, U., Li, S., Zhang, Q., Zhang, Q., Wong, J., Wang, J., Wang, H., Fang, Y., Zhang, H., & Wang, B. (2018). A Late Cretaceous amber biota from central Myanmar. Nature Communications, 9(1), 1-6.
Kawahara, Y., Plotkin, D., Espeland, M., Meusemann, K., Toussaint, E. F. A., Donarth, A., & Breinholt, J. W.. (2019). Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the National Academy of Sciences, 116(45), 22657-22663.
Lovegrove, B. G. (2017). A phenology of the evolution of endothermy in birds and mammals. Biological Reviews, 92(2), 1213-1240.
Crompton, A. W., & Luo, Z. X. (1993). Relationships of the Liassic mammals Sinoconodon, Morganucodon and Dinnetherium. In F.S. Szalay, M. J. Novacek, M. C. McKenna (Eds.). Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials (pp. 30-45). Springer-Verlag, Berlin, Germany.
Crompton, A. W., Musinsky, C., & Owerkowicz, T. (2015). Evolution of the Mammalian Nose. In K. P. Dial, N. Shubin, E. L. Brainerd (Eds.). Great Transformations in Vertebrate Evolution (pp. 189-203). University of Chicago Press, Chicago, USA.
Grigg, G. C., Beard, L. A., & Augee, M. L. (2004). The evolution of endothermy and its diversity in mammals and birds. Physiological and Biochemical Zoology, 77(6), 982-997.
Nicol, S. C. (2017). Energy homeostasis in monotremes. Frontiers in Neuroscience, 11, 195.
Bajdek, P., Qvarnström, M., Owocki, K., Sulej, T., Sennikov, A. G., Golubev, V. K., & Niedźwiedzki, G. (2016). Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia. Letharia, 49(4), 455-477.
Hillenius, W. J. (1994). Turbinates in therapsids: Evidence for Late Permian origins of mammalian endothermy. Evolution; Internation Journal of Organic Evolution, 48(2), 207-229.
Ruben, J. A., Hillenius, W. J., Kemp, T. S., & Quick, D. E. (2011). The Evolution of Mammalian Endothermy: In A. Chinsamy-Turan (Eds.). Forerunners of Mammals: Radiation • Histology • Biology (pp. 273-288). Indiana University Press, Bloomington and Indianapolis, USA.
Shelton, C. D., & Sander, P. M.. (2017). Long bone histology of Ophiacodon reveals the geologically earliest occurrence of fibrolamellar bone in the mammalian stem lineage. Comptes Rendus Palevol, 16(4), 397-424.
Huttenlocker, A. K., & Botha-Brink, J. (2014). Bone microstructure and the evolution of growth patterns in Permo-Triassic therocephalians (Amniota, Therapsida) of South Africa. PeerJ, 2, e325.
Tumarkin-Deratzian, A. R. (2007). Fibrolamellar bone in wild adult Alligator mississippiensis. Journal of Herpetology, 41(2), 341-345.
Bennett, A. F., Hicks, J. W. (2001). Postprandial exercise: Prioritization or additivity of the metabolic responses? Journal of Experimental Biology, 204, 2127-2132.
Jones, K. E., Angielczyk, K. D., & Pierce, S. E. (2019). Stepwise shifts underlie evolutionary trends in morphological complexity of the mammalian vertebral column. Nature Communications, 10(1), 1-13.
Owerkowicz, T., Farmer, C. G., Hicks, J. W., & Brainerd, E. L. (1999). Contribution of gular pumping to lung ventilation in monitor lizards. Science, 284(5420), 1661-1663.
Maier, W., Van den Heever, J., & Durand, F. (1996). New therapsid specimens and the origin of the secondary hard and soft palate of mammals. Journal of Zoological Systematics Evolutionary Research, 34(1), 9-19.
d'ABellairs, A., & Kamal, A. M.. (1981). The Chondrocranium and the Development of the Skull in Recent Reptiles: In C. Gans, T. S. Parsons (Eds.). Biology of the Reptilia (Vol. 11, pp. 1-263). Academic Press, London, UK.
Hillenius, W. J. (1992). The evolution of nasal turbinates and mammalian endothermy. Paleobiology, 18(1), 17-29.
Lillegraven, J. A., & Krusat, G. (1991). Cranio-mandibular anatomy of Haldanodon exspectatus (Docodonta; Mammalia) from the Late Jurassic of Portugal and its implications to the evolution of mammalian characters. Rocky Mountain Geology, 28(2), 39-138.
Huttenlocker, A. K., & Farmer, C. G. (2017). Bone microvasculature tracks red blood cell size diminution in triassic mammal and dinosaur forerunners. Current Biology, 27(1), 48-54.
Damiani, R., Modesto, S., Yates, A., & Neveling, J. (2003). Earliest evidence of cynodont burrowing. Proceedings of the Royal Society B: Biological Sciences, 270(1525), 1747-1751.
Botha-Brink, J. (2017). Burrowing in Lystrosaurus: Preadaptation to a postextinction environment?. Journal of Vertebrate Paleontology, 37, e1365080.
Klevezal, G. A., & Mina, M. V. (1995). Recording Structures in Mammals, CRC Press, Florida, USA.
Naji, S., Colard, T., Blondiaux, J., Bertrand, B., d'Incau, E., & Bocquet-Appel, J. P. (2016). Cementochronology, to cut or not to cut? International Journal of Paleopathology, 15, 113-119.
Le Cabec, A., Tang, N. K., Ruano Rubio, V., & Hillson, S. (2019). Nondestructive adult age at death estimation: visualizing cementum annulations in a known age historical human assemblage using synchrotron X-ray microtomography. American Journal of Physics, 168(1), 25-44.
Newham, E., Corfe, I. J., Brown, K. R., Gostling, N. J., Gill, P. G., & Schneider, P. (2020). Synchrotron radiation-based X-ray tomography reveals life history in primate cementum incrementation. Journal of the Royal Society, Interface, 17, 20200538.
Köhler, M., Marín-Moratalla, N., Jordana, X., & Aanes, R. (2012). Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature, 487(7407), 358-361.
Sanchez, S., Tafforeau, P., Clack, J. A., & Ahlberg, P. E. (2016). Life history of the stem tetrapod Acanthostega revealed by synchrotron microtomography. Nature, 537(7620), 408-411.
Pearl, R. (1928) The Rate of Living. University of London Press, London, UK.
Mitsui, A., Hamuro, J., Nakamura, H., Kondo, N., Hirabayashi, Y., Ishizaki-Koizumi, S., Hirakawa, T., Inoue, T., & Yodoi, J. (2002). Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxidants and Redox Signaling, 4(4), 693-696.
Holloszy, J. O., Smith, E. K., Vining, M., & Adams, S. (1985). Effect of voluntary exercise on longevity of rats. Journal of Applied Physiology, 59(3), 826-831.
Lee, I. M., Hsieh, C. C., & Paffenbarger, R. S. (1995). Exercise intensity and longevity in men: The Harvard Alumni Health Study. Jama, 273(15), 1179-1184.
Chikina, M., Robinson, J. D., & Clark, N. L. (2016). Hundreds of genes experienced convergent shifts in selective pressure in marine mammals. Molecular Biology, 33(9), 2182-2192.
Munshi-South, J., & Wilkinson, G. S. (2010). Bats and birds: exceptional longevity despite high metabolic rates. Ageing Research Reviews, 9(1), 12-19.
Else, P. L. (2021). Mammals to membranes: A reductionist story. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 253, 110552.
Hulbert, A., Beard, L., & Grigg, G. (2010). The possible role of membrane lipids in the exceptionally long life of the short-beaked echidna, Tachyglossus aculeatus. Australian Zoologist, 35(2), 154-159.
Frankel, D., Davies, M., Bhushan, B., Kulaberoglu, Y., Urriola-Munoz, P., Bertrand-Michel, J., Pergande, M. R., Smith, A. A., Preet, S., Park, T. J., Vendruscolo, M., Rankin, K. S., Cologna, S. M., Kumita, J. R., Cenac, N., & Smith, E. S. J. (2020). Cholesterol-rich naked mole-rat brain lipid membranes are susceptible to amyloid beta-induced damage in vitro. Aging, 12(21), 22266-22290.
Wilkinson, G. S., Adams, D. M., Haghani, A., Lu, A. T., Zoller, J., Breeze, C. E., & Horvath, S. (2021). DNA methylation predicts age and provides insight into exceptional longevity of bats. Nature Communications, 12(1), 1-13.
Allan, G. H., Cassey, P., Snelling, E. P., Maloney, S. K., & Seymour, R. S. (2014). Blood flow for bone remodelling correlates with locomotion in living and extinct birds. Journal of Experimental Biology, 217(16), 2956-2962.
Hu, Q., Nelson, T. J., Snelling, E. P., & Seymour, R. S. (2018). Femoral bone perfusion through the nutrient foramen during growth and locomotor development of western grey kangaroos (Macropus fuliginosus). Journal of Experimental Biology, 221(4), 1-6.
Seymour, R. S., Smith, S. L., White, C. R., & Henderson, D. M. (2012). Blood flow to long bones indicates activity metabolism in mammals, reptiles and dinosaurs. Proceedings of the Royal Society B: Biological Sciences, 279(1728), 451-456.
Gill, P. G., Purnell, M. A., Crumpton, N., Brown, K. R., Gostling, N. J., Stampanoni, M., & Rayfield, E. J. (2014). Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature, 512(7514), 303-305.
O'Meara, R. N., & Asher, R. J. (2016). The evolution of growth patterns in mammalian versus nonmammalian cynodonts. Paleobiology, 42(3), 439-464.
Luo, Z. X., Kielan-Jaworowska, Z., & Cifelli, R. L. (2004). Evolution of dental replacement in mammals. In: Fanfare for an Uncommon Paleontologist-Festschrift in Honor of Dr Malcolm C. McKenna. Eds: Dawson, MR., Lillegraven, JA. pp. 159-175. Bulletin of Carnegie Museum of Natural History, 36, 159-175.
Jäger, K. R., Gill, P. G., Corfe, I. J., & Martin, T. (2019). Occlusion and dental function of Morganucodon and Megazostrodon. Journal of Vertebrate Paleontology, 39, e1635135.
Lautenschlager, S., Gill, P. G., Luo, Z. X., Fagen, M J., & Rayfield, E. J. (2017). Morphological evolution of the mammalian jaw adductor complex. Biological Reviews, 92(4), 1910-1940.
Lautenschlager, S., Gill, P. G., Luo, Z. X., Fagen, M. J., & Rayfield, E. J. (2018). The role of miniaturization in the evolution of the mammalian jaw and middle ear. Nature, 561(7724), 533-537.
Kemp, T. S. (2005). The Origin and Evolution of Mammals (pp ). Oxford University Press, Oxford, UK.
Luo, Z. X., Meng, Q. J., Grossnickle, D. M., Liu, D., Neander, A. I., Zhang, Y. G., & Ji, Q. (2017). New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature, 548(7667), 326-329.
Mao, F., Hu, Y., Li, C., Wang, Y., Chase, M. H., Smith, A. K., & Meng, J. (2020). Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal. Science, 367(6475), 305-308.
LeBlanc, A. R. H., Reisz, R. R., Brink, K. S., & Abdala, F. (2016). Mineralized periodontia in extinct relatives of mammals shed light on the evolutionary history of mineral homeostasis in periodontal tissue maintenance. Journal of Clinical Periodontology, 43(4), 323-332.
Hoffman, E. A., & Rowe, T. B. (2018). Jurassic stem-mammal perinates and the origin of mammalian reproduction and growth. Nature, 561(7721), 104-108.
Calamari, Z. T., Hu, J. K. H., & Klein, O. D. (2018). Tissue mechanical forces and evolutionary developmental changes act through space and time to shape tooth morphology and function. Bioessays, 40, 1800140.
Chinsamy, A., & Hurum, J. H. (2006). Bone microstructure and growth patterns of early mammals. Acta Palaeontologica Polonica, 51(2), 325-338.
Seebacher, F. (1989). Is endothermy an evolutionary by-product? Trends in Ecology & Evolution, 35(6), 503-511.
Menzies, P. (1989). A unified account of causal relata. Australian Journal of Philosophy, 67(1), 59-83.
Lovegrove, B. G. (2012). The evolution of endothermy in Cenozoic mammals: A plesiomorphic-apomorphic continuum. Biological Reviews, 87(1), 128-162.
Lovegrove, B. G. (2019). Fires of Life: Endothermy in Birds and Mammals (pp. 384). Yale University Press, London, UK.
Huttenlocker, A. K., & Shelton, C. D. (2020). Bone histology of varanopids (Synapsida) from Richards Spur, Oklahoma, sheds light on growth patterns and lifestyle in early terrestrial colonizers. Philosophical Transactions of the Royal Society B, 375, 20190142.
Lungmus, J. K., & Angielczyk, K. D. (2019). Antiquity of forelimb ecomorphological diversity in the mammalian stem lineage (Synapsida). Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6903-6907.
Blob, R. W. (2001). Evolution of hindlimb posture in nonmammalian therapsids: Biomechanical tests of paleontological hypotheses. Paleobiology, 27(1), 14-38.
Matsuoka, H., Kusuhashi, N., & Corfe, I. J. (2016). A new early Cretaceous tritylodontid (Synapsida, Cynodontia, Mammaliamorpha) from the Kuwajima Formation (Tetori Group) of central Japan. Journal of Vertebrate Paleontology, 36, e1112289.
Ray, S., Botha, J., & Chinsamy, A. (2004). Bone histology and growth patterns of some non mammalian therapsids. Journal of Vertebrate Paleontology, 24(3), 634-648.
Huey, R. B., & Ward, P. D. (2005). Hypoxia, global warming, and terrestrial late Permian extinctions. Science, 308(5720), 398-401.
Krapovickas, V., Mancuso, A. C., Marsicano, C. A., Domnanovich, N. S., & Schultz, C. L. (2013). Large tetrapod burrows from the Middle Triassic of Argentina: A behavioral adaptation to seasonal semi-arid climate? Lethaia, 46(2), 154-169.
McNab, B. K. (1978). The evolution of endothermy in the phylogeny of mammals. The American Naturalist, 112(983), 1-21.
Moar, R., Dayan, T., & Ferguson-Grow, H., Jones, K. E. (2017). Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nature Ecology & Evolution, 1(12), 1889-1895.
Panciroli, E., Walsh, S., Fraser, N. C., Brusatte, S. L., & Corfe, I. J. (2017). A reassessment of the postcanine dentition and systematics of the tritylodontid Stereognathus (Cynodontia, Tritylodontidae, Mammaliamorpha),from the middle Jurassic of the United Kingdom. Journal of Vertebrate Paleontology, 37, e1351448.
Luo, Z. X., Gatesy, S. M., Jenkins, F. A., Amaral, W. W., & Shubin, N. H. (2015). Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proceedings of the National Academy of Sciences of the United States of America, 112, E7101.
Bi, S., Wang, Y.,. Guan, J., Sheng, X., & Meng, J. (2014). Three new Jurassic euharamiyidan species reinforce early divergence of mammals. Nature, 514(7524), 579-584.
Luo, Z. X. (2007). Transformation and diversification in early mammal evolution. Nature, 450(7172), 1011-1019.
Grossnickle, D. M., Smith, S. M., & Wilson, G. P. (2019). Untangling the multiple ecological radiations of early mammals. Trends in Ecology & Evolution, 34(10), 936-949.
Chen, M., & Wilson, G. P., (2015). A multivariate approach to infer locomotor modes in Mesozoic mammals. Paleobiology, 41(2), 280-312.
Newham, E., Benson, R., Upchurch, P., & Goswami, A. (2014). Mesozoic mammaliaform diversity: The effect of sampling corrections on reconstructions of evolutionary dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 412, 32-44.
Close, R. A., Friedman, M., Lloyd, G. T., & Benson, R. B. (2015). Evidence for a mid-Jurassic adaptive radiation in mammals. Current Biology, 25(16), 2137-2142.
Wilson, G. P., Evans, A. R., Corfe, I. J., Smits, P. D., Fortelius, M., & Jernvall, J. (2012). Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature, 483(7390), 457-460.
Adams, N. F., Rayfield, E. J., Cox, P. G., Cobb, S. N., & Corfe, I. J. (2019). Functional tests of the competitive exclusion hypothesis for multituberculate extinction. Royal Society Open Science, 6, 181536.
Lovegrove, B. G. (2012). A Single Origin of Heterothermy in Mammals. In T. Ruf, C. Bieber, W. Arnold, E. Millesi (Eds.). Living in a Seasonal World (pp 3-11). Springer, Berlin, German.
Grossnickle, D. M., & Newham, E. (2016). Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K-Pg boundary. Proceedings of the Royal Society B: Biological Sciences, 283, 20160256.
Janis, C. M., & Wilhelm, P. B. (1993). Were there mammalian pursuit predators in the tertiary? Dances with wolf avatars. Journal of Mammalian Evolution, 1(2), 103-125.
Brocklehurst, N., Panciroli, E., & Benevento, G. L., Benson, R. B. J. (2021). Mammaliaform extinctions as a driver of the morphological radiation of Cenozoic mammals, Current Biology, 31(13), 2955-2963.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686-693.
Lovegrove, B. G. (2003). The influence of climate on the basal metabolic rate of small mammals: A slow-fast metabolic continuum. Journal of Comparative Physiology B, 173(2), 87-112.
Newham, E. (2018). Exploring the Use of Tomography for the Quantification of Cementum Growth Patterns Across the Mammal Phylogeny, Doctoral dissertation, University of Southampton, UK.
فهرسة مساهمة: Keywords: endothermy; fossil; mammal evolution; metabolism; palaeontology; synapsid
تواريخ الأحداث: Date Created: 20220216 Date Completed: 20220504 Latest Revision: 20220504
رمز التحديث: 20231215
DOI: 10.1002/bies.202100060
PMID: 35170781
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-1878
DOI:10.1002/bies.202100060