دورية أكاديمية

Exploiting the Fluxionality of Lanthanide Complexes in the Design of Paramagnetic Fluorine Probes.

التفاصيل البيبلوغرافية
العنوان: Exploiting the Fluxionality of Lanthanide Complexes in the Design of Paramagnetic Fluorine Probes.
المؤلفون: Wilharm RK; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States., Ramakrishnam Raju MV; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States., Hoefler JC; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States., Platas-Iglesias C; Centro de Investigacións Científicas Avanzadas and Departamento de Quıímica, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia Spain., Pierre VC; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
المصدر: Inorganic chemistry [Inorg Chem] 2022 Mar 07; Vol. 61 (9), pp. 4130-4142. Date of Electronic Publication: 2022 Feb 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 0366543 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-510X (Electronic) Linking ISSN: 00201669 NLM ISO Abbreviation: Inorg Chem Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: [Easton, Pa.] American Chemical Society.
مستخلص: Fluorine-19 MRI is increasingly being considered as a tool for biomolecular imaging, but the very poor sensitivity of this technique has limited most applications. Previous studies have long established that increasing the sensitivity of 19 F molecular probes requires increasing the number of fluorine nuclei per probe as well as decreasing their longitudinal relaxation time. The latter is easily achieved by positioning the fluorine atoms in close proximity to a paramagnetic metal ion such as a lanthanide(III). Increasing the number of fluorine atoms per molecule, however, is only useful inasmuch as all of the fluorine nuclei are chemically equivalent. Previous attempts to achieve this equivalency have focused on designing highly symmetric and rigid fluorinated macrocyclic ligands. A much simpler approach consists of exploiting highly fluxional lanthanide complexes with open coordination sites that have a high affinity for phosphated and phosphonated species. Computational studies indicate that Ln III -TREN-MAM is highly fluxional, rapidly interconverting between at least six distinct isomers. In neutral water at room temperature, Ln III -TREN-MAM binds two or three equivalents of fluorinated phosphonates. The close proximity of the 19 F nuclei to the Ln III center in the ternary complex decreases the relaxation times of the fluorine nuclei up to 40-fold. Advantageously, the fluorophosphonate-bound lanthanide complex is also highly fluxional such that all 19 F nuclei are chemically equivalent and display a single 19 F signal with a small LIS. Dynamic averaging of fluxional fluorinated supramolecular assemblies thus produces effective 19 F MR systems.
References: Inorg Chem. 2007 Apr 2;46(7):2584-95. (PMID: 17295475)
Angew Chem Int Ed Engl. 2017 Sep 25;56(40):12215-12218. (PMID: 28763152)
Chem Rev. 2015 Jan 28;115(2):1106-29. (PMID: 25329814)
Magn Reson Med. 2010 Nov;64(5):1252-9. (PMID: 20860007)
Inorg Chem. 2003 Jan 27;42(2):428-35. (PMID: 12693224)
J Phys Chem A. 2020 Feb 20;124(7):1362-1371. (PMID: 31975596)
J Am Chem Soc. 2006 Feb 22;128(7):2222-3. (PMID: 16478170)
MAGMA. 2019 Feb;32(1):115-122. (PMID: 30498883)
J Am Chem Soc. 2010 Apr 21;132(15):5336-7. (PMID: 20345132)
J Am Chem Soc. 2006 Apr 26;128(16):5344-5. (PMID: 16620097)
Phys Chem Chem Phys. 2015 Jul 7;17(25):16507-11. (PMID: 26051749)
J Chem Phys. 2005 Jan 15;122(3):34107. (PMID: 15740192)
Magn Reson Med. 2008 Nov;60(5):1066-72. (PMID: 18956457)
Chem Sci. 2015 Mar 1;6(3):1655-1662. (PMID: 29449916)
J Am Chem Soc. 2002 May 1;124(17):4901-9. (PMID: 11971741)
J Am Chem Soc. 2014 Dec 31;136(52):17954-7. (PMID: 25495928)
Dalton Trans. 2011 Jan 28;40(4):904-13. (PMID: 21127807)
Inorg Chem. 2019 Mar 18;58(6):3732-3743. (PMID: 30835108)
Angew Chem Int Ed Engl. 2015 Sep 7;54(37):10783-6. (PMID: 26223970)
Biomaterials. 2009 Aug;30(23-24):3946-55. (PMID: 19443028)
Biomacromolecules. 2008 Oct;9(10):2826-33. (PMID: 18795785)
Chemistry. 2019 Mar 27;25(18):4782-4792. (PMID: 30690809)
Inorg Chem. 2021 Oct 18;60(20):15808-15817. (PMID: 34618431)
Environ Sci Technol. 2017 Apr 18;51(8):4549-4558. (PMID: 28379006)
Inorg Chem. 2017 Oct 16;56(20):12206-12213. (PMID: 28981278)
Magn Reson Med. 2007 Oct;58(4):725-34. (PMID: 17899609)
FASEB J. 2007 Jun;21(8):1647-54. (PMID: 17284484)
Inorg Chem. 2019 Dec 2;58(23):16087-16099. (PMID: 31738520)
Invest Radiol. 2006 Mar;41(3):305-12. (PMID: 16481914)
Inorg Chem. 2017 Feb 6;56(3):1546-1557. (PMID: 28094930)
Phys Chem Chem Phys. 2018 Jul 4;20(26):17676-17686. (PMID: 29932451)
Trends Biotechnol. 2010 Jul;28(7):363-70. (PMID: 20427096)
Magn Reson Imaging. 1996;14(5):541-51. (PMID: 8843366)
Magn Reson Med. 2022 Apr;87(4):1952-1970. (PMID: 34812528)
Biomacromolecules. 2009 Feb 9;10(2):374-81. (PMID: 19128056)
Int J Radiat Oncol Biol Phys. 1994 Apr 30;29(1):95-103. (PMID: 8175452)
NMR Biomed. 2014 Mar;27(3):261-71. (PMID: 24353148)
Front Chem. 2022 Feb 07;10:821020. (PMID: 35198539)
Chem Soc Rev. 2020 Feb 24;49(4):1090-1108. (PMID: 32016270)
Magn Reson Med. 2008 Dec;60(6):1506-11. (PMID: 19025893)
Prog Nucl Magn Reson Spectrosc. 2013 Apr;70:25-49. (PMID: 23540575)
J Am Chem Soc. 2012 Oct 3;134(39):16413-23. (PMID: 23009210)
Biomaterials. 2012 Apr;33(10):2858-71. (PMID: 22244696)
Chemistry. 2010 Jan 4;16(1):134-48. (PMID: 19957317)
Chem Commun (Camb). 2011 Jul 7;47(25):7233-5. (PMID: 21617807)
Inorg Chem. 2016 Apr 4;55(7):3490-7. (PMID: 26977907)
Inorg Chem. 2019 Jun 3;58(11):7571-7583. (PMID: 31094193)
Inorg Chem. 2006 Oct 2;45(20):8355-64. (PMID: 16999435)
J Am Chem Soc. 2011 Aug 3;133(30):11725-31. (PMID: 21699190)
Nat Biotechnol. 2005 Aug;23(8):983-7. (PMID: 16041364)
J Chem Theory Comput. 2017 Feb 14;13(2):554-562. (PMID: 28005364)
Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305. (PMID: 16240044)
J Chem Theory Comput. 2016 Mar 8;12(3):1148-56. (PMID: 26839966)
Chemphyschem. 2012 Nov 12;13(16):3640-50. (PMID: 22927182)
J Am Chem Soc. 2008 Mar 5;130(9):2832-41. (PMID: 18266363)
Nat Neurosci. 2005 Apr;8(4):527-33. (PMID: 15768036)
J Phys Chem B. 2009 May 7;113(18):6378-96. (PMID: 19366259)
J Phys Chem A. 2015 Jun 18;119(24):6436-45. (PMID: 26000832)
J Magn Reson Imaging. 1991 Nov-Dec;1(6):705-9. (PMID: 1823176)
Inorg Chem. 2019 Nov 18;58(22):15189-15201. (PMID: 31674182)
J Chem Theory Comput. 2008 Jun;4(6):908-19. (PMID: 26621232)
Front Chem. 2018 May 23;6:160. (PMID: 29876342)
J Am Chem Soc. 2002 Oct 30;124(43):12697-705. (PMID: 12392417)
Chem Rev. 2005 Aug;105(8):2999-3093. (PMID: 16092826)
Magn Reson Med. 2011 Oct;66(4):931-6. (PMID: 21381109)
J Comput Chem. 2019 May 30;40(14):1463-1470. (PMID: 30801743)
Chemistry. 2013 Aug 26;19(35):11644-60. (PMID: 23868470)
Inorg Chem. 2020 Mar 16;59(6):4096-4108. (PMID: 32105456)
Magn Reson Med. 2009 Sep;62(3):747-53. (PMID: 19585593)
J Immunother Cancer. 2018 Oct 11;6(1):105. (PMID: 30305175)
Chem Commun (Camb). 2018 Jul 26;54(61):8486-8489. (PMID: 30003200)
PLoS One. 2011;6(12):e29040. (PMID: 22216163)
Anal Chem. 2021 Dec 14;93(49):16552-16561. (PMID: 34859996)
معلومات مُعتمدة: R01 DK124333 United States DK NIDDK NIH HHS
تواريخ الأحداث: Date Created: 20220223 Date Completed: 20220308 Latest Revision: 20230308
رمز التحديث: 20230308
مُعرف محوري في PubMed: PMC8966431
DOI: 10.1021/acs.inorgchem.1c03908
PMID: 35196450
قاعدة البيانات: MEDLINE
الوصف
تدمد:1520-510X
DOI:10.1021/acs.inorgchem.1c03908