دورية أكاديمية

Colicin E1 opens its hinge to plug TolC.

التفاصيل البيبلوغرافية
العنوان: Colicin E1 opens its hinge to plug TolC.
المؤلفون: Budiardjo SJ; Center for Computational Biology, The University of Kansas, Lawrence, United States., Stevens JJ; Department of Molecular Biosciences, The University of Kansas, Lawrence, United States., Calkins AL; Department of Chemistry, University of Michigan, Ann Arbor, United States., Ikujuni AP; Department of Molecular Biosciences, The University of Kansas, Lawrence, United States., Wimalasena VK; Department of Molecular Biosciences, The University of Kansas, Lawrence, United States., Firlar E; Rutgers CryoEM & Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, United States., Case DA; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, United States., Biteen JS; Department of Chemistry, University of Michigan, Ann Arbor, United States., Kaelber JT; Rutgers CryoEM & Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, United States., Slusky JSG; Center for Computational Biology, The University of Kansas, Lawrence, United States.; Department of Molecular Biosciences, The University of Kansas, Lawrence, United States.
المصدر: ELife [Elife] 2022 Feb 24; Vol. 11. Date of Electronic Publication: 2022 Feb 24.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: eLife Sciences Publications, Ltd Country of Publication: England NLM ID: 101579614 Publication Model: Electronic Cited Medium: Internet ISSN: 2050-084X (Electronic) Linking ISSN: 2050084X NLM ISO Abbreviation: Elife Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-
مواضيع طبية MeSH: Bacteriocins*/metabolism , Colicins*/chemistry , Colicins*/metabolism , Colicins*/pharmacology , Escherichia coli Proteins*/metabolism, Anti-Bacterial Agents/metabolism ; Anti-Bacterial Agents/pharmacology ; Bacterial Outer Membrane Proteins/metabolism ; Cryoelectron Microscopy ; Escherichia coli/genetics ; Escherichia coli/metabolism ; Membrane Transport Proteins/metabolism ; Protein Transport
مستخلص: The double membrane architecture of Gram-negative bacteria forms a barrier that is impermeable to most extracellular threats. Bacteriocin proteins evolved to exploit the accessible, surface-exposed proteins embedded in the outer membrane to deliver cytotoxic cargo. Colicin E1 is a bacteriocin produced by, and lethal to, Escherichia coli that hijacks the outer membrane proteins (OMPs) TolC and BtuB to enter the cell. Here, we capture the colicin E1 translocation domain inside its membrane receptor, TolC, by high-resolution cryo-electron microscopy to obtain the first reported structure of a bacteriocin bound to TolC. Colicin E1 binds stably to TolC as an open hinge through the TolC pore-an architectural rearrangement from colicin E1's unbound conformation. This binding is stable in live E. coli cells as indicated by single-molecule fluorescence microscopy. Finally, colicin E1 fragments binding to TolC plug the channel, inhibiting its native efflux function as an antibiotic efflux pump, and heightening susceptibility to three antibiotic classes. In addition to demonstrating that these protein fragments are useful starting points for developing novel antibiotic potentiators, this method could be expanded to other colicins to inhibit other OMP functions.
Competing Interests: SB, JS, AC, AI, VW, EF, DC, JB, JK, JS No competing interests declared
(© 2022, Budiardjo et al.)
References: Mol Microbiol. 2007 Feb;63(4):1008-25. (PMID: 17233825)
J Mol Biol. 2009 Dec 11;394(4):653-80. (PMID: 19765592)
mBio. 2020 Mar 10;11(2):. (PMID: 32156826)
Biochemistry. 1976 Jun 15;15(12):2561-70. (PMID: 820368)
Mol Gen Genet. 1989 Sep;218(3):460-4. (PMID: 2573819)
Biophys J. 2004 Dec;87(6):3901-11. (PMID: 15465872)
Proteins. 2007 Aug 1;68(2):516-29. (PMID: 17444522)
Nature. 2000 Jun 22;405(6789):914-9. (PMID: 10879525)
Protein Sci. 2018 Jan;27(1):293-315. (PMID: 29067766)
Nat Protoc. 2008;3(2):163-75. (PMID: 18274517)
Nat Commun. 2016 Feb 12;7:10731. (PMID: 26867482)
EMBO J. 1992 Feb;11(2):441-7. (PMID: 1537329)
J Bacteriol. 2015 Aug 1;197(15):2479-88. (PMID: 25962916)
J Phys Chem B. 2021 Apr 15;125(14):3622-3628. (PMID: 33797916)
J Struct Biol. 2015 Nov;192(2):216-21. (PMID: 26278980)
Nat Methods. 2017 Mar;14(3):290-296. (PMID: 28165473)
Microbiology (Reading). 1997 Sep;143 ( Pt 9):2931-2938. (PMID: 9308177)
Biochemistry. 2018 Jul 24;57(29):4374-4381. (PMID: 29949342)
Mol Microbiol. 1995 Apr;16(1):57-67. (PMID: 7651137)
J Mol Biol. 2004 Sep 17;342(3):697-702. (PMID: 15342230)
Nat Protoc. 2015 Dec;10(12):2074-80. (PMID: 26584447)
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713. (PMID: 26574453)
Acta Crystallogr D Struct Biol. 2020 Aug 1;76(Pt 8):724-728. (PMID: 32744254)
Nature. 1997 Jan 30;385(6615):461-4. (PMID: 9009197)
Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13849-54. (PMID: 16166265)
Nat Methods. 2015 Oct;12(10):943-6. (PMID: 26280328)
J Endotoxin Res. 2001;7(3):167-202. (PMID: 11581570)
Mol Cell. 2020 May 21;78(4):670-682.e8. (PMID: 32343944)
Curr Opin Struct Biol. 2015 Dec;35:109-15. (PMID: 26629934)
Microbiol Mol Biol Rev. 2007 Mar;71(1):158-229. (PMID: 17347522)
Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):531-544. (PMID: 29872004)
EMBO J. 2007 May 16;26(10):2594-604. (PMID: 17464289)
Mol Cell. 2001 Jul;8(1):159-68. (PMID: 11511369)
Nature. 2021 Aug;596(7873):583-589. (PMID: 34265844)
Science. 2013 Jun 28;340(6140):1570-4. (PMID: 23812713)
Proteins. 2010 Apr;78(5):1195-211. (PMID: 19938154)
Nat Struct Mol Biol. 2008 Feb;15(2):199-205. (PMID: 18223659)
J Chem Theory Comput. 2013 Apr 9;9(4):2020-2034. (PMID: 25788871)
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3692-3697. (PMID: 29555747)
Antimicrob Agents Chemother. 2010 Sep;54(9):3770-5. (PMID: 20606071)
PLoS One. 2011;6(6):e21196. (PMID: 21698261)
J Bacteriol. 1967 Oct;94(4):1112-23. (PMID: 4167587)
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. (PMID: 20383002)
J Bacteriol. 1980 Aug;143(2):594-602. (PMID: 7009553)
J Mol Biol. 1991 Feb 5;217(3):429-39. (PMID: 1704440)
Nature. 2021 May;593(7857):125-129. (PMID: 33854236)
Biophys J. 2019 Mar 19;116(6):975-982. (PMID: 30846363)
Nat Commun. 2018 Mar 14;9(1):1082. (PMID: 29540681)
Mol Microbiol. 2012 Jul;85(1):21-38. (PMID: 22624875)
J Struct Biol. 2013 Sep;183(3):429-440. (PMID: 23876978)
Structure. 2018 Sep 4;26(9):1266-1274.e2. (PMID: 30057025)
Structure. 1997 Mar 15;5(3):443-58. (PMID: 9083117)
J Biol Chem. 1982 Apr 10;257(7):3857-63. (PMID: 7037787)
J Membr Biol. 2021 Feb;254(1):41-50. (PMID: 33462665)
J Struct Biol. 2018 Oct;204(1):38-44. (PMID: 29981485)
Anal Chem. 2015 Jan 6;87(1):42-63. (PMID: 25380480)
Nat Protoc. 2018 Jan;13(1):79-98. (PMID: 29215632)
EMBO J. 2021 Nov 2;40(21):e108610. (PMID: 34515361)
Antimicrob Agents Chemother. 2015 Apr;59(4):2388-97. (PMID: 25645845)
Proc Natl Acad Sci U S A. 1972 Aug;69(8):2030-4. (PMID: 4559591)
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):12051-12056. (PMID: 29078392)
J Biol Chem. 2005 Jul 1;280(26):24663-8. (PMID: 15857830)
Elife. 2018 Nov 09;7:. (PMID: 30412051)
J Bacteriol. 2016 Dec 13;199(1):. (PMID: 27795317)
Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):519-530. (PMID: 29872003)
J Bacteriol. 2007 Apr;189(7):2667-76. (PMID: 17277071)
Biophys Physicobiol. 2019 Nov 29;16:391-406. (PMID: 31984193)
Biochem J. 2018 Dec 12;475(23):3903-3915. (PMID: 30541793)
Commun Biol. 2019 Jun 19;2:218. (PMID: 31240256)
Biochemistry. 2016 Sep 13;55(36):5084-94. (PMID: 27536862)
Nat Rev Microbiol. 2010 Dec;8(12):843-8. (PMID: 21060316)
Nat Struct Biol. 2003 Nov;10(11):948-54. (PMID: 14528295)
Nat Commun. 2021 Jul 30;12(1):4625. (PMID: 34330923)
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12353-8. (PMID: 16894158)
J Biol Chem. 2007 Aug 10;282(32):23163-70. (PMID: 17548346)
J Struct Biol. 2013 Nov;184(2):226-36. (PMID: 23954653)
Nat Commun. 2018 Jul 20;9(1):2846. (PMID: 30030429)
Nature. 2015 Jul 16;523(7560):333-6. (PMID: 26061769)
J Gen Microbiol. 1989 Dec;135(12):3413-20. (PMID: 2699893)
J Bacteriol. 2007 Jun;189(11):4217-22. (PMID: 17416663)
J Biol Chem. 1984 Jun 25;259(12):7682-7. (PMID: 6736022)
Bioinformatics. 2012 Oct 1;28(19):2425-30. (PMID: 22843985)
Protein Sci. 2018 Jan;27(1):14-25. (PMID: 28710774)
Mol Microbiol. 1987 Jul;1(1):82-5. (PMID: 2838730)
معلومات مُعتمدة: DP2 GM128201 United States GM NIGMS NIH HHS; P20 GM113117 United States GM NIGMS NIH HHS; R21 GM128022 United States GM NIGMS NIH HHS; P20 GM103418 United States GM NIGMS NIH HHS; P20 GM103638 United States GM NIGMS NIH HHS; K12 GM063651 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: E. coli; TolC; antibiotic efflux; antibiotic resistance; colicin; colicin E1; infectious disease; microbiology; molecular biophysics; structural biology
Local Abstract: [plain-language-summary] Bacteria are constantly warring with each other for space and resources. As a result, they have developed a range of molecular weapons to poison, damage or disable other cells. For instance, bacteriocins are proteins that can latch onto structures at the surface of enemy bacteria and push toxins through their outer membrane. Bacteria are increasingly resistant to antibiotics, representing a growing concern for modern healthcare. One way that they are able to survive is by using ‘efflux pumps’ studded through their external membranes to expel harmful drugs before these can cause damage. Budiardjo et al. wanted to test whether bacteriocins could interfere with this defence mechanism by blocking efflux pumps. Bacteriocins are usually formed of binding elements (which recognise specific target proteins) and of a ‘killer tail’ that can stab the cell. Experiments showed that the binding parts of a bacteriocin could effectively ‘plug’ efflux pumps in Escherichia coli bacteria: high-resolution molecular microscopy revealed how the bacteriocin fragment binds to the pump, while fluorescent markers showed that it attached to the surface of E. coli and stopped the efflux pumps from working. As a result, lower amounts of antibiotics were necessary to kill the bacteria when bacteriocins were present. The work by Budiardjo et al. could lead to new ways to combat bacteria that will reduce the need for current antibiotics. In the future, bacteriocins could also be harnessed to target other proteins than efflux pumps, allowing scientists to manipulate a range of bacterial processes.
المشرفين على المادة: 0 (Anti-Bacterial Agents)
0 (Bacterial Outer Membrane Proteins)
0 (Bacteriocins)
0 (Colicins)
0 (Escherichia coli Proteins)
0 (Membrane Transport Proteins)
تواريخ الأحداث: Date Created: 20220224 Date Completed: 20220422 Latest Revision: 20221221
رمز التحديث: 20221221
مُعرف محوري في PubMed: PMC9020818
DOI: 10.7554/eLife.73297
PMID: 35199644
قاعدة البيانات: MEDLINE
الوصف
تدمد:2050-084X
DOI:10.7554/eLife.73297