دورية أكاديمية

Dhurrin increases but does not mitigate oxidative stress in droughted Sorghum bicolor.

التفاصيل البيبلوغرافية
العنوان: Dhurrin increases but does not mitigate oxidative stress in droughted Sorghum bicolor.
المؤلفون: Sohail MN; School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.; School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia., Quinn AA; School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia., Blomstedt CK; School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia., Gleadow RM; School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia. ros.gleadow@monash.edu.
المصدر: Planta [Planta] 2022 Feb 28; Vol. 255 (4), pp. 74. Date of Electronic Publication: 2022 Feb 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag [etc.] Country of Publication: Germany NLM ID: 1250576 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-2048 (Electronic) Linking ISSN: 00320935 NLM ISO Abbreviation: Planta Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag [etc.]
مواضيع طبية MeSH: Sorghum*/chemistry, Hydrogen Cyanide ; Nitriles ; Oxidative Stress
مستخلص: Main Conclusion: Droughted sorghum had higher concentrations of ROS in both wildtype and dhurrin-lacking mutants. Dhurrin increased in wildtype genotypes with drought. Dhurrin does not appear to mitigate oxidative stress in sorghum. Sorghum bicolor is tolerant of high temperatures and prolonged droughts. During droughts, concentrations of dhurrin, a cyanogenic glucoside, increase posing a risk to livestock of hydrogen cyanide poisoning. Dhurrin can also be recycled without the release of hydrogen cyanide presenting the possibility that it may have functions other than defence. It has been hypothesised that dhurrin may be able to mitigate oxidative stress by scavenging reactive oxygen species (ROS) during biosynthesis and recycling. To test this, we compared the growth and chemical composition of S. bicolor in total cyanide deficient sorghum mutants (tcd1) with wild-type plants that were either well-watered or left unwatered for 2 weeks. Plants from the adult cyanide deficient class of mutant (acdc1) were also included. Foliar dhurrin increased in response to drought in all lines except tcd1 and acdc1, but not in the roots or leaf sheaths. Foliar ROS concentration increased in drought-stressed plants in all genotypes. Phenolic concentrations were also measured but no differences were detected. The total amounts of dhurrin, ROS and phenolics on a whole plant basis were lower in droughted plants due to their smaller biomass, but there were no significant genotypic differences. Up until treatments began at the 3-leaf stage, tcd1 mutants grew more slowly than the other genotypes but after that they had higher relative growth rates, even when droughted. The findings presented here do not support the hypothesis that the increase in dhurrin commonly seen in drought-stressed sorghum plays a role in reducing oxidative stress by scavenging ROS.
(© 2022. The Author(s).)
References: Biochem J. 2015 Aug 1;469(3):375-89. (PMID: 26205491)
Curr Opin Plant Biol. 2010 Jun;13(3):338-47. (PMID: 20197238)
J Biol Chem. 1995 Feb 24;270(8):3506-11. (PMID: 7876084)
Phytochemistry. 2003 Jul;63(6):699-704. (PMID: 12842143)
Plant Cell Physiol. 2013 Jun;54(6):817-26. (PMID: 23612932)
Photosynth Res. 2012 Dec;114(2):97-110. (PMID: 23161228)
J Biol Chem. 1999 Dec 10;274(50):35483-91. (PMID: 10585420)
Annu Rev Plant Biol. 2014;65:155-85. (PMID: 24579992)
Oecologia. 2002 Nov;133(3):288-294. (PMID: 28466223)
Anal Biochem. 1965 Apr;11:1-5. (PMID: 14328641)
Plant Physiol Biochem. 2013 Dec;73:83-92. (PMID: 24080394)
Plant J. 2017 Jun;90(5):856-867. (PMID: 27801967)
Trends Plant Sci. 2004 Oct;9(10):490-8. (PMID: 15465684)
Trends Plant Sci. 2013 May;18(5):250-8. (PMID: 23415056)
Plant Biotechnol J. 2012 Jan;10(1):54-66. (PMID: 21880107)
Plant Physiol. 1997 Dec;115(4):1661-70. (PMID: 9414567)
Glob Chang Biol. 2016 Oct;22(10):3461-73. (PMID: 27252148)
Tree Physiol. 2002 Sep;22(13):939-45. (PMID: 12204850)
BMC Genomics. 2016 Dec 13;17(1):1021. (PMID: 27964718)
Funct Plant Biol. 2018 Jun;45(7):705-718. (PMID: 32291046)
Plant Physiol. 2020 Jul;183(3):925-942. (PMID: 32350122)
Plant Direct. 2018 Feb 26;2(2):e00038. (PMID: 31245705)
Plant Physiol. 1989 Aug;90(4):1552-9. (PMID: 16666964)
Arch Biochem Biophys. 1995 Oct 20;323(1):177-86. (PMID: 7487064)
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18848-53. (PMID: 18003897)
Colloids Surf B Biointerfaces. 2007 Nov 15;60(2):201-6. (PMID: 17643970)
Phytochemistry. 2009 Feb;70(3):388-93. (PMID: 19195667)
J Exp Bot. 2014 Nov;65(21):6251-63. (PMID: 25381433)
Plants (Basel). 2020 Dec 17;9(12):. (PMID: 33348715)
Plant J. 2018 Jun;94(6):1109-1125. (PMID: 29659075)
Phytochemistry. 2008 Jun;69(9):1795-813. (PMID: 18472115)
J Agric Food Chem. 1998 May;46(5):1887-1892. (PMID: 29072454)
J Exp Bot. 2015 Apr;66(7):1817-32. (PMID: 25697789)
Funct Plant Biol. 2002 Jan;29(1):103-110. (PMID: 32689457)
Plant Physiol. 2005 Sep;139(1):363-74. (PMID: 16126856)
J Chem Ecol. 2002 Jul;28(7):1301-13. (PMID: 12199497)
Plant Signal Behav. 2011 Nov;6(11):1720-31. (PMID: 22041989)
Plant Mol Biol. 1998 Feb;36(3):393-405. (PMID: 9484480)
معلومات مُعتمدة: DP130101049 Australian Research Council; DP18010101 Australian Research Council
فهرسة مساهمة: Keywords: Cyanide; Cyanogenic glucosides; Dhurrin; Drought; Phenolics; Reactive oxygen species
المشرفين على المادة: 0 (Nitriles)
2WTB3V159F (Hydrogen Cyanide)
P5999IY65C (dhurrin)
تواريخ الأحداث: Date Created: 20220228 Date Completed: 20220302 Latest Revision: 20220502
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8885504
DOI: 10.1007/s00425-022-03844-z
PMID: 35226202
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-2048
DOI:10.1007/s00425-022-03844-z