دورية أكاديمية

Human psychophysical discrimination of spatially dependant Pancharatnam-Berry phases in optical spin-orbit states.

التفاصيل البيبلوغرافية
العنوان: Human psychophysical discrimination of spatially dependant Pancharatnam-Berry phases in optical spin-orbit states.
المؤلفون: Sarenac D; Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L3G1, Canada. dsarenac@uwaterloo.ca., Silva AE; School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, N2L3G1, Canada., Kapahi C; Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L3G1, Canada.; Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L3G1, Canada., Cory DG; Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L3G1, Canada.; Department of Chemistry, University of Waterloo, Waterloo, ON, N2L3G1, Canada., Thompson B; School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, N2L3G1, Canada.; Centre for Eye and Vision Research, 17W Science Park, Hong Kong., Pushin DA; Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L3G1, Canada.; Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L3G1, Canada.
المصدر: Scientific reports [Sci Rep] 2022 Feb 28; Vol. 12 (1), pp. 3245. Date of Electronic Publication: 2022 Feb 28.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Refraction, Ocular*, Humans ; Eye Movements ; Mathematics ; Motion
مستخلص: We tested the ability of human observers to discriminate distinct profiles of spatially dependant geometric phases when directly viewing stationary structured light beams. Participants viewed polarization coupled orbital angular momentum (OAM) states, or "spin-orbit" states, in which the OAM was induced through Pancharatnam-Berry phases. The coupling between polarization and OAM in these beams manifests as spatially dependant polarization. Regions of uniform polarization are perceived as specifically oriented Haidinger's brushes, and study participants discriminated between two spin-orbit states based on the rotational symmetry in the spatial orientations of these brushes. Participants used self-generated eye movements to prevent adaptation to the visual stimuli. After initial training, the participants were able to correctly discriminate between two spin-orbit states, differentiated by OAM [Formula: see text], with an average success probability of [Formula: see text] ([Formula: see text], [Formula: see text]). These results support our previous observation that human observers can directly perceive spin-orbit states, and extend this finding to non-rotating beams, OAM modes induced via Pancharatnam-Berry phases, and the discrimination of states that are differentiated by OAM.
(© 2022. The Author(s).)
References: Cohen, E. et al. Geometric phase from aharonov-bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019). (PMID: 10.1038/s42254-019-0071-1)
Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959). (PMID: 10.1103/PhysRev.115.485)
Shivaramakrishnan, P. Generalized theory of interference, and its applications. In Proceedings of the Indian Academy of Sciences-Section A, Vol. 44, pp. 247–262. (Springer, Berlin, 1956).
Berry, M. V. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987). (PMID: 10.1080/09500348714551321)
Wilczek, F. & Shapere, A. Geometric Phases in Physics Vol. 5 (World Scientific, 1989).
Berry, M. et al. Anticipations of the geometric phase. Phys. Today 43, 34–40 (1990). (PMID: 10.1063/1.881219)
Bachtold, A. et al. Aharonov-bohm oscillations in carbon nanotubes. Nature 397, 673–675 (1999). (PMID: 10.1038/17755)
Noguchi, A., Shikano, Y., Toyoda, K. & Urabe, S. Aharonov–Bohm effect in the tunnelling of a quantum rotor in a linear paul trap. Nat. Commun. 5, 1–6 (2014). (PMID: 10.1038/ncomms4868)
Biener, G., Niv, A., Kleiner, V. & Hasman, E. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Opt. Lett. 27, 1875–1877 (2002). (PMID: 1803338710.1364/OL.27.001875)
Hasman, E., Kleiner, V., Biener, G. & Niv, A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett. 82, 328–330 (2003). (PMID: 10.1063/1.1539300)
Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002). (PMID: 1802638710.1364/OL.27.001141)
Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006). (PMID: 1671223410.1103/PhysRevLett.96.163905)
Nsofini, J. et al. Spin-orbit states of neutron wave packets. Phys. Rev. A 94, 013605 (2016). (PMID: 10.1103/PhysRevA.94.013605)
Sarenac, D. et al. Generation and detection of spin-orbit coupled neutron beams. Proc. Natl. Acad. Sci. 116, 20328–20332 (2019). (PMID: 31548384678991210.1073/pnas.1906861116)
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992). (PMID: 990691210.1103/PhysRevA.45.8185)
Konrad, T. & Forbes, A. Quantum mechanics and classical light. Contemp. Phys. 60, 1–22 (2019). (PMID: 10.1080/00107514.2019.1580433)
McLaren, M., Konrad, T. & Forbes, A. Measuring the nonseparability of vector vortex beams. Phys. Rev. A 92, 023833 (2015). (PMID: 10.1103/PhysRevA.92.023833)
Zhan, Q. Cylindrical vector beams: From mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009). (PMID: 10.1364/AOP.1.000001)
Cardano, F. et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt. 51, C1–C6 (2012). (PMID: 2250508410.1364/AO.51.0000C1)
Galvez, E. J., Khadka, S., Schubert, W. H. & Nomoto, S. Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-gauss and polarization modes of light. Appl. Opt. 51, 2925–2934 (2012). (PMID: 2261459510.1364/AO.51.002925)
Rosales-Guzmán, C., Ndagano, B. & Forbes, A. A review of complex vector light fields and their applications. J. Opt. 20, 123001 (2018). (PMID: 10.1088/2040-8986/aaeb7d)
Wang, X.-L., Ding, J., Ni, W.-J., Guo, C.-S. & Wang, H.-T. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett. 32, 3549–3551 (2007). (PMID: 1808753810.1364/OL.32.003549)
Chen, H. et al. Generation of vector beam with space-variant distribution of both polarization and phase. Opt. Lett. 36, 3179–3181 (2011). (PMID: 2184720010.1364/OL.36.003179)
Bomzon, Z., Kleiner, V. & Hasman, E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001). (PMID: 1804962610.1364/OL.26.001424)
Forbes, A. Controlling light’s helicity at the source: Orbital angular momentum states from lasers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 20150436 (2017). (PMID: 10.1098/rsta.2015.0436)
Oron, R. et al. The formation of laser beams with pure azimuthal or radial polarization. Appl. Phys. Lett. 77, 3322–3324 (2000). (PMID: 10.1063/1.1327271)
Rubinsztein-Dunlop, H. et al. Roadmap on structured light. J. Opt. 19, 013001 (2016). (PMID: 10.1088/2040-8978/19/1/013001)
Milione, G. et al. 4[Formula: see text] 20 gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de) multiplexer. Opt. Lett. 40, 1980–1983 (2015). (PMID: 2592776310.1364/OL.40.001980)
Marrucci, L. et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13, 064001 (2011). (PMID: 10.1088/2040-8978/13/6/064001)
Arora, G., Deepa, S., Khan, S. N. & Senthilkumaran, P. Detection of degenerate stokes index states. Sci. Rep. 10, 1–10 (2020). (PMID: 10.1038/s41598-020-77365-8)
Angelsky, O. V., Mokhun, I. I., Mokhun, A. I. & Soskin, M. S. Interferometric methods in diagnostics of polarization singularities. Phys. Rev. E 65, 036602 (2002). (PMID: 10.1103/PhysRevE.65.036602)
Giordani, T. et al. Machine learning-based classification of vector vortex beams. Phys. Rev. Lett. 124, 160401 (2020). (PMID: 3238395610.1103/PhysRevLett.124.160401)
Sarenac, D. et al. Direct discrimination of structured light by humans. Proc. Natl. Acad. Sci. 117, 14682–14687 (2020). (PMID: 32546523733453110.1073/pnas.1920226117)
Tinsley, J. N. et al. Direct detection of a single photon by humans. Nat. Commun. 7, 12172 (2016). (PMID: 27434854496031810.1038/ncomms12172)
Loulakis, M., Blatsios, G., Vrettou, C. S. & Kominis, I. K. Quantum biometrics with retinal photon counting. Phys. Rev. Appl. 8, 044012 (2017). (PMID: 10.1103/PhysRevApplied.8.044012)
Sim, N., Cheng, M. F., Bessarab, D., Jones, C. M. & Krivitsky, L. A. Measurement of photon statistics with live photoreceptor cells. Phys. Rev. Lett. 109, 113601 (2012). (PMID: 2300562610.1103/PhysRevLett.109.113601)
Dodel, A. et al. Proposal for witnessing non-classical light with the human eye. Quantum 1, 7 (2017). (PMID: 10.22331/q-2017-04-25-7)
Margaritakis, A., Anyfantaki, G., Mouloudakis, K., Gratsea, A. & Kominis, I. K. Spatially selective and quantum-statistics-limited light stimulus for retina biometrics and pupillometry. Appl. Phys. B Lasers Opt. 126, 20 (2020). (PMID: 10.1007/s00340-020-07438-z)
Karnieli, A., Li, Y. & Arie, A. The geometric phase in nonlinear frequency conversion. Front. Phys. 17, 1–31 (2022). (PMID: 10.1007/s11467-021-1102-9)
Shen, Y. Rays, waves, su (2) symmetry and geometry: Toolkits for structured light. J. Opt. 23, 124004 (2021). (PMID: 10.1088/2040-8986/ac3676)
Haidinger, W. Ueber das directe erkennen des polarisirten lichts und der lage der polarisationsebene. Ann. Phys. 139, 29–39 (1844). (PMID: 10.1002/andp.18441390903)
Misson, G. P., Timmerman, B. H. & Bryanston-Cross, P. J. Human perception of visual stimuli modulated by direction of linear polarization. Vis. Res. 115, 48–57 (2015). (PMID: 2629107310.1016/j.visres.2015.08.004)
Misson, G. P. & Anderson, S. J. The spectral, spatial and contrast sensitivity of human polarization pattern perception. Sci. Rep. 7, 16571 (2017). (PMID: 29185499570743710.1038/s41598-017-16873-6)
Misson, G. P., Temple, S. E. & Anderson, S. J. Computational simulation of human perception of spatially dependent patterns modulated by degree and angle of linear polarization. JOSA A 36, B65–B70 (2019). (PMID: 3104495710.1364/JOSAA.36.000B65)
Horváth, G., Horváth, G. & Varju, D. Polarized Light in Animal Vision: Polarization Patterns in Nature (Springer, 2004). (PMID: 10.1007/978-3-662-09387-0)
Temple, S. E. et al. Perceiving polarization with the naked eye: Characterization of human polarization sensitivity. Proc. R. Soc. B Biol. Sci. 282, 20150338 (2015). (PMID: 10.1098/rspb.2015.0338)
Bone, R. A. The role of the macular pigment in the detection of polarized light. Vis. Res. 20, 213–220 (1980). (PMID: 738559410.1016/0042-6989(80)90105-4)
Coren, S. The use of Haidinger’s brushes in the study of stabilized retinal images. Behav. Res. Methods Instrum. 3, 295–297 (1971). (PMID: 10.3758/BF03209949)
Berry, M. V. Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A Pure Appl. Opt. 6, 259 (2004). (PMID: 10.1088/1464-4258/6/2/018)
Sarenac, D. et al. Generation of a lattice of spin-orbit beams via coherent averaging. Phys. Rev. Lett. 121, 183602 (2018). (PMID: 3044440810.1103/PhysRevLett.121.183602)
Schwarz, S. et al. Talbot effect of orbital angular momentum lattices with single photons. Phys. Rev. A 101, 043815 (2020). (PMID: 10.1103/PhysRevA.101.043815)
Sarenac, D. et al. Methods for preparation and detection of neutron spin-orbit states. New J. Phys. 20, 103012 (2018). (PMID: 10.1088/1367-2630/aae3ac)
Furukawa, A. et al. Effective speckle reduction in laser projection displays. In Emerging Liquid Crystal Technologies III Vol. 6911 (ed. Chien, L.-C.) 183–189 (International Society for Optics and Photonics (SPIE), 2008). (PMID: 10.1117/12.760860)
Schaefer, B., Collett, E., Smyth, R., Barrett, D. & Fraher, B. Measuring the stokes polarization parameters. Am. J. Phys. 75, 163–168 (2007). (PMID: 10.1119/1.2386162)
International Commission on Non-Ionizing Radiation Protection. Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 14 [Formula: see text]m. Health Phys. 79, 431–440 (2000). (PMID: 10.1097/00004032-200010000-00013)
Wickens, T. D. Elementary Signal Detection Theory (Oxford University Press, 2002).
De Vries, H. L., Spoor, A. & Jielof, R. Properties of the eye with respect to polarized light. Physica 19, 419–432 (1953). (PMID: 10.1016/S0031-8914(53)80048-0)
Liebman, P. A., Jagger, W. S., Kaplan, M. W. & Bargoot, F. G. Membrane structure changes in rod outer segments associated with rhodopsin bleaching. Nature 251, 31–36 (1974). (PMID: 454725110.1038/251031a0)
Hochheimer, B. F. & Kues, H. A. Retinal polarization effects. Appl. Opt. 21, 3811–3818 (1982). (PMID: 2039632510.1364/AO.21.003811)
Shen, Y., Wang, Z., Xing, F., Naidoo, D. & Forbes, A. Su (2) poincaré sphere: A generalized representation for multidimensional structured light. Phys. Rev. A 102, 031501 (2020). (PMID: 10.1103/PhysRevA.102.031501)
Shen, Y. et al. Creation and control of high-dimensional multi-partite classically entangled light. Light Sci. Appl. 10, 1–10 (2021). (PMID: 10.1038/s41377-021-00493-x)
Forster, H. W. The clinical use of the haidinger’s brushes phenomenon. Am. J. Ophthalmol. 38, 661–665 (1954). (PMID: 1320727410.1016/0002-9394(54)90291-3)
Naylor, E. J. & Stanworth, A. The measurement and clinical significance of the Haidinger effect. Trans. Ophthalmol. Soc. U.K. 75, 67 (1955). (PMID: 13360907)
Müller, P. L. et al. Perception of haidinger brushes in macular disease depends on macular pigment density and visual acuity. Investig. Ophthalmol. Visual Sci. 57, 1448–1456 (2016). (PMID: 10.1167/iovs.15-19004)
تواريخ الأحداث: Date Created: 20220301 Date Completed: 20230912 Latest Revision: 20230912
رمز التحديث: 20230913
مُعرف محوري في PubMed: PMC8885666
DOI: 10.1038/s41598-022-07089-4
PMID: 35228565
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-022-07089-4