دورية أكاديمية

Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy.

التفاصيل البيبلوغرافية
العنوان: Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy.
المؤلفون: Smith M; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.; Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA., Dai A; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Ghilardi G; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.; Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA., Amelsberg KV; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.; Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA., Devlin SM; Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Pajarillo R; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.; Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA., Slingerland JB; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Beghi S; Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA., Herrera PS; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Weill Cornell Medical College, New York, NY, USA., Giardina P; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Clurman A; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Dwomoh E; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Armijo G; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Gomes ALC; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Littmann ER; The Duchossois Family Institute, University of Chicago, Chicago, IL, USA., Schluter J; Institute for Computational Medicine, New York University Langone Health, New York, NY, USA., Fontana E; Molecular Microbiology Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Taur Y; Infectious Disease Service, Department of Medicine, and Immunology Program, Sloan Kettering Institute, New York, NY, USA., Park JH; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.; Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Palomba ML; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.; Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Halton E; Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Department of Nursing, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Ruiz J; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Jain T; Division of Hematologic Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA., Pennisi M; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy., Afuye AO; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Perales MA; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Department of Medicine, Weill Cornell Medical College, New York, NY, USA., Freyer CW; Department of Pharmacy, Hospital of the University of Pennsylvania, Philadelphia, PA, USA., Garfall A; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA., Gier S; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA., Nasta S; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA., Landsburg D; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA., Gerson J; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA., Svoboda J; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA., Cross J; The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Chong EA; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.; Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA., Giralt S; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Department of Medicine, Weill Cornell Medical College, New York, NY, USA., Gill SI; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.; Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA., Riviere I; Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Porter DL; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.; Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA., Schuster SJ; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.; Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA., Sadelain M; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Frey N; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.; Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA., Brentjens RJ; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.; Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA., June CH; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.; Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA., Pamer EG; The Duchossois Family Institute, University of Chicago, Chicago, IL, USA., Peled JU; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Department of Medicine, Weill Cornell Medical College, New York, NY, USA., Facciabene A; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA. facciabe@pennmedicine.upenn.edu.; Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA. facciabe@pennmedicine.upenn.edu.; Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA. facciabe@pennmedicine.upenn.edu., van den Brink MRM; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA. vandenbm@mskcc.org.; Department of Immunology, Sloan Kettering Institute, New York, NY, USA. vandenbm@mskcc.org., Ruella M; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA. mruella@upenn.edu.; Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA. mruella@upenn.edu.; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA. mruella@upenn.edu.
المصدر: Nature medicine [Nat Med] 2022 Apr; Vol. 28 (4), pp. 713-723. Date of Electronic Publication: 2022 Mar 14.
نوع المنشور: Journal Article; Multicenter Study; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Company Country of Publication: United States NLM ID: 9502015 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-170X (Electronic) Linking ISSN: 10788956 NLM ISO Abbreviation: Nat Med Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Nature Publishing Company
Original Publication: New York, NY : Nature Pub. Co., [1995-
مواضيع طبية MeSH: Gastrointestinal Microbiome* , Neurotoxicity Syndromes*/etiology , Receptors, Chimeric Antigen*, Antigens, CD19 ; Humans ; Immunotherapy, Adoptive/adverse effects ; Prospective Studies ; Retrospective Studies
مستخلص: Anti-CD19 chimeric antigen receptor (CAR) T cell therapy has led to unprecedented responses in patients with high-risk hematologic malignancies. However, up to 60% of patients still experience disease relapse and up to 80% of patients experience CAR-mediated toxicities, such as cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. We investigated the role of the intestinal microbiome on these outcomes in a multicenter study of patients with B cell lymphoma and leukemia. We found in a retrospective cohort (n = 228) that exposure to antibiotics, in particular piperacillin/tazobactam, meropenem and imipenem/cilastatin (P-I-M), in the 4 weeks before therapy was associated with worse survival and increased neurotoxicity. In stool samples from a prospective cohort of CAR T cell recipients (n = 48), the fecal microbiome was altered at baseline compared to healthy controls. Stool sample profiling by 16S ribosomal RNA and metagenomic shotgun sequencing revealed that clinical outcomes were associated with differences in specific bacterial taxa and metabolic pathways. Through both untargeted and hypothesis-driven analysis of 16S sequencing data, we identified species within the class Clostridia that were associated with day 100 complete response. We concluded that changes in the intestinal microbiome are associated with clinical outcomes after anti-CD19 CAR T cell therapy in patients with B cell malignancies.
(© 2022. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.)
التعليقات: Comment in: Med. 2022 May 13;3(5):281-283. (PMID: 35584646)
Erratum in: Nat Med. 2023 Nov;29(11):2954. (PMID: 36253610)
References: Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018). (PMID: 293853766637939)
Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015). (PMID: 25319501)
Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra225 (2014).
Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018). (PMID: 293853705996391)
Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017). (PMID: 292267975882485)
Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019). (PMID: 30501490)
Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020). (PMID: 322423587731441)
Chong, E. A., Ruella, M. & Schuster, S. J. Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy. N. Engl. J. Med. 384, 673–674 (2021). (PMID: 33596362)
Abramson, J. S. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020). (PMID: 32888407)
Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015). (PMID: 265160654670800)
Orlando, E. J. et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 24, 1504–1506 (2018). (PMID: 30275569)
Ruella, M. et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat. Med. 24, 1499–1503 (2018). (PMID: 302755686511988)
Spiegel, J. Y. et al. Outcomes of patients with large B-cell lymphoma progressing after axicabtagene ciloleucel therapy. Blood 137, 1832–1835 (2021). (PMID: 331569258555382)
Santomasso, B., Bachier, C., Westin, J., Rezvani, K. & Shpall, E. J. The other side of CAR T-cell therapy: cytokine release syndrome, neurologic toxicity, and financial burden. Am. Soc. Clin. Oncol. Educ. Book 39, 433–444 (2019). (PMID: 31099694)
Gust, J. et al. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 7, 1404–1419 (2017). (PMID: 290257715718945)
Santomasso, B. D. et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 8, 958–971 (2018). (PMID: 298805846385599)
Taraseviciute, A. et al. Chimeric antigen receptor T cell-mediated neurotoxicity in nonhuman primates. Cancer Discov. 8, 750–763 (2018). (PMID: 295631036058704)
Ruella, M. & Locke, F. L. Beat pediatric ALL MRD: CD28 CAR T and transplant. Blood 134, 2333–2335 (2019). (PMID: 318772136933292)
Guedan, S., Ruella, M. & June, C. H. Emerging cellular therapies for cancer. Annu. Rev. Immunol. 37, 145–171 (2019). (PMID: 30526160)
Siegler, E. L. & Kenderian, S. S. Neurotoxicity and cytokine release syndrome after chimeric antigen receptor T cell therapy: insights into mechanisms and novel therapies. Front. Immunol. 11, 1973 (2020). (PMID: 329831327485001)
Karschnia, P. et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood 133, 2212–2221 (2019). (PMID: 30808634)
Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013). (PMID: 242649904048947)
Daillère, R. et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45, 931–943 (2016). (PMID: 27717798)
Uribe-Herranz, M. et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J. Clin. Invest. 130, 466–479 (2020). (PMID: 31815742)
Yang, K. et al. Suppression of local type I interferon by gut microbiota-derived butyrate impairs antitumor effects of ionizing radiation. J. Exp. Med. 218, e20201915 (2021). (PMID: 334967847844434)
Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015). (PMID: 265416064873287)
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018). (PMID: 29097493)
Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018). (PMID: 293020146707353)
Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015). (PMID: 265416104721659)
Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018). (PMID: 29097494)
Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021). (PMID: 34239137)
Peled, J. U. et al. Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 382, 822–834 (2020). (PMID: 321016647534690)
Uribe-Herranz, M. et al. Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12. JCI Insight 3, e94952 (2018). (PMID: 5916241)
Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021). (PMID: 33303685)
Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021). (PMID: 335421318097968)
Pflug, N. et al. Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. Oncoimmunology 5, e1150399 (2016). (PMID: 274716194938364)
Shono, Y. et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci. Transl. Med. 8, 339ra71 (2016). (PMID: 271947294991773)
Morjaria, S. et al. Antibiotic-induced shifts in fecal microbiota density and composition during hematopoietic stem cell transplantation. Infect. Immun. 87, e00206-19 (2019). (PMID: 312629816704593)
Brook, I., Wexler, H. M. & Goldstein, E. J. C. Antianaerobic antimicrobials: spectrum and susceptibility testing. Clin. Microbiol. Rev. 26, 526–546 (2013). (PMID: 238243723719496)
Hirayama, A. V. et al. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood 133, 1876–1887 (2019). (PMID: 307826116484391)
Vercellino, L. et al. Predictive factors of early progression after CAR T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Adv. 4, 5607–5615 (2020). (PMID: 331808997686887)
Nastoupil, L. J. et al. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US Lymphoma CAR T Consortium. J. Clin. Oncol. 38, 3119–3128 (2020). (PMID: 324016347499611)
Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 25, 625–638 (2019). (PMID: 30592986)
Braniste, V. et al. The gut microbiota influences blood–brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014). (PMID: 254114714396848)
Ochoa-Repáraz, J. et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J. Immunol. 185, 4101–4108 (2010). (PMID: 20817872)
Taur, Y. et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 124, 1174–1182 (2014). (PMID: 249396564133489)
Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011). (PMID: 217028983218848)
Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016). (PMID: 268370034740747)
Schluter, J. et al. The gut microbiota is associated with immune cell dynamics in humans. Nature 588, 303–307 (2020). (PMID: 332397907725892)
Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000). (PMID: 10592173102409)
Cellini, B. et al. Pyridoxal 5′-phosphate-dependent enzymes at the crossroads of host–microbe tryptophan metabolism. Int. J. Mol. Sci. 21, 5823 (2020). (PMID: 7461572)
Chaput, N. et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 28, 1368–1379 (2017). (PMID: 28368458)
Frankel, A. E. et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 19, 848–855 (2017). (PMID: 289235375602478)
Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013). (PMID: 242267733869884)
Kespohl, M. et al. The microbial metabolite butyrate induces expression of Th1-associated factors in CD4 + T cells. Front. Immunol. 8, 1036 (2017). (PMID: 288944475581317)
Schuster, S. J. et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017). (PMID: 292267645788566)
Frey, N. V. et al. Optimizing chimeric antigen receptor T-cell therapy for adults with acute lymphoblastic leukemia. J. Clin. Oncol. 38, 415–422 (2020). (PMID: 31815579)
Locke, F. L. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 20, 31–42 (2019). (PMID: 30518502)
Porter, D., Frey, N., Wood, P. A., Weng, Y. & Grupp, S. A. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J. Hematol. Oncol. 11, 35 (2018). (PMID: 294997505833070)
Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008). (PMID: 190186612586385)
Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011). (PMID: 20847294)
Doan, T. et al. Gut microbial diversity in antibiotic-naive children after systemic antibiotic exposure: a randomized controlled trial. Clin. Infect. Dis. 64, 1147–1153 (2017). (PMID: 284024085849050)
Buffie, C. G. et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 80, 62–73 (2012). (PMID: 220065643255689)
Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017). (PMID: 289678855839636)
Stein-Thoeringer, C. K. et al. Lactose drives Enterococcus expansion to promote graft-versus-host disease. Science 366, 1143–1149 (2019). (PMID: 317805607003985)
Jenq, R. R. et al. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol. Blood Marrow Transplant. 21, 1373–1383 (2015). (PMID: 259772304516127)
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). (PMID: 272140474927377)
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009). (PMID: 200035002803857)
McElreath, R. Statistical Rethinking: a Bayesian Course with Examples in R and Stan (CRC Press, 2020).
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0 https://cran.r-project.org/web/packages/ggpubr/index.html (2020).
Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
معلومات مُعتمدة: R01 CA226983 United States CA NCI NIH HHS; P01 CA214278 United States CA NCI NIH HHS; P01 CA023766 United States CA NCI NIH HHS; R01 HL147584 United States HL NHLBI NIH HHS; R01 CA219871 United States CA NCI NIH HHS; R01 HL125571 United States HL NHLBI NIH HHS; K99 CA212302 United States CA NCI NIH HHS; K08 CA194256 United States CA NCI NIH HHS; R01 CA228358 United States CA NCI NIH HHS; R00 CA212302 United States CA NCI NIH HHS; K08 HL143189 United States HL NHLBI NIH HHS; R01 HL123340 United States HL NHLBI NIH HHS; R01 CA206012 United States CA NCI NIH HHS; R01 CA228308 United States CA NCI NIH HHS; P30 CA008748 United States CA NCI NIH HHS; P01 AG052359 United States AG NIA NIH HHS
المشرفين على المادة: 0 (Antigens, CD19)
0 (Receptors, Chimeric Antigen)
تواريخ الأحداث: Date Created: 20220315 Date Completed: 20220421 Latest Revision: 20240227
رمز التحديث: 20240227
مُعرف محوري في PubMed: PMC9434490
DOI: 10.1038/s41591-022-01702-9
PMID: 35288695
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-170X
DOI:10.1038/s41591-022-01702-9