دورية أكاديمية

Immune regulation by fungal strain diversity in inflammatory bowel disease.

التفاصيل البيبلوغرافية
العنوان: Immune regulation by fungal strain diversity in inflammatory bowel disease.
المؤلفون: Li XV; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA., Leonardi I; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA., Putzel GG; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA., Semon A; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA., Fiers WD; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA., Kusakabe T; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA., Lin WY; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA., Gao IH; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA., Doron I; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA., Gutierrez-Guerrero A; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA., DeCelie MB; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA., Carriche GM; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA., Mesko M; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA., Yang C; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA., Naglik JR; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK., Hube B; Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany.; Institute of Microbiology, FriedrichSchiller University, Jena, Germany., Scherl EJ; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.; The Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA., Iliev ID; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA. iliev@med.cornell.edu.; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA. iliev@med.cornell.edu.; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA. iliev@med.cornell.edu.; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA. iliev@med.cornell.edu.
المصدر: Nature [Nature] 2022 Mar; Vol. 603 (7902), pp. 672-678. Date of Electronic Publication: 2022 Mar 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Fungi*/genetics , Fungi*/pathogenicity , Gastrointestinal Microbiome* , Inflammatory Bowel Diseases* , Microbiota* , Mycobiome*, Animals ; CRISPR-Cas Systems ; Candida albicans ; Genetic Variation ; Humans ; Immunity ; Inflammation ; Mammals
مستخلص: The fungal microbiota (mycobiota) is an integral part of the complex multikingdom microbial community colonizing the mammalian gastrointestinal tract and has an important role in immune regulation 1-6 . Although aberrant changes in the mycobiota have been linked to several diseases, including inflammatory bowel disease 3-9 , it is currently unknown whether fungal species captured by deep sequencing represent living organisms and whether specific fungi have functional consequences for disease development in affected individuals. Here we developed a translational platform for the functional analysis of the mycobiome at the fungal-strain- and patient-specific level. Combining high-resolution mycobiota sequencing, fungal culturomics and genomics, a CRISPR-Cas9-based fungal strain editing system, in vitro functional immunoreactivity assays and in vivo models, this platform enables the examination of host-fungal crosstalk in the human gut. We discovered a rich genetic diversity of opportunistic Candida albicans strains that dominate the colonic mucosa of patients with inflammatory bowel disease. Among these human-gut-derived isolates, strains with high immune-cell-damaging capacity (HD strains) reflect the disease features of individual patients with ulcerative colitis and aggravated intestinal inflammation in vivo through IL-1β-dependent mechanisms. Niche-specific inflammatory immunity and interleukin-17A-producing T helper cell (T H 17 cell) antifungal responses by HD strains in the gut were dependent on the C. albicans-secreted peptide toxin candidalysin during the transition from a benign commensal to a pathobiont state. These findings reveal the strain-specific nature of host-fungal interactions in the human gut and highlight new diagnostic and therapeutic targets for diseases of inflammatory origin.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Comment in: Nat Rev Gastroenterol Hepatol. 2022 May;19(5):280. doi: 10.1038/s41575-022-00613-x. (PMID: 35379940)
Comment in: Gastroenterology. 2022 Jul;163(1):333-334. doi: 10.1053/j.gastro.2022.05.001. (PMID: 35525319)
Comment in: Med. 2022 May 13;3(5):270-272. doi: 10.1016/j.medj.2022.04.011. (PMID: 35584642)
Erratum in: Nature. 2022 Aug;608(7922):E21. doi: 10.1038/s41586-022-05102-4. (PMID: 35859182)
References: The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012). (PMID: 356495810.1038/nature11234)
Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019). (PMID: 31142855665027810.1038/s41586-019-1237-9)
Chehoud, C. et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1948–1956 (2015). (PMID: 2608361710.1097/MIB.0000000000000454)
Hoarau, G. et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio 7, e01250–16 (2016). (PMID: 27651359503035810.1128/mBio.01250-16)
Liguori, G. et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients. J. Crohn’s Colitis 10, 296–305 (2016). (PMID: 10.1093/ecco-jcc/jjv209)
Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017). (PMID: 2684350810.1136/gutjnl-2015-310746)
Ott, S. J. et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand. J. Gastroenterol. 43, 831–841 (2008). (PMID: 1858452210.1080/00365520801935434)
Limon, J. J. et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe 25, 377–388 (2019). (PMID: 30850233641794210.1016/j.chom.2019.01.007)
Jain, U. et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 371, 1154–1159 (2021). (PMID: 3370726310.1126/science.abd0919)
Kaplan, G. G. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 12, 720–727 (2015). (PMID: 2632387910.1038/nrgastro.2015.150)
Israeli, E. et al. Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut 54, 1232–1236 (2005). (PMID: 16099791177467210.1136/gut.2004.060228)
Lewis, J. D. et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe 18, 489–500 (2015). (PMID: 26468751463330310.1016/j.chom.2015.09.008)
Schaffer, T. et al. Anti-Saccharomyces cerevisiae mannan antibodies (ASCA) of Crohn’s patients crossreact with mannan from other yeast strains, and murine ASCA IgM can be experimentally induced with Candida albicans. Inflamm. Bowel dis. 13, 1339–1346 (2007). (PMID: 1763656710.1002/ibd.20228)
Standaert-Vitse, A. et al. Candida albicans colonization and ASCA in familial Crohn’s disease. Am. J. Gastroenterol. 104, 1745–1753 (2009). (PMID: 1947125110.1038/ajg.2009.225)
Doron, I. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 184, 1017–1031 (2021). (PMID: 33548172793685510.1016/j.cell.2021.01.016)
Leonardi, I. et al. CX3CR1 + mononuclear phagocytes control immunity to intestinal fungi. Science 359, 232–236 (2018). (PMID: 29326275580546410.1126/science.aao1503)
Cohen, R., Roth, F. J., Delgado, E., Ahearn, D. G. & Kalser, M. H. Fungal flora of the normal human small and large intestine. N. Engl. J. Med. 280, 638–641 (1969). (PMID: 576484210.1056/NEJM196903202801204)
Sovran, B. et al. Enterobacteriaceae are essential for the modulation of colitis severity by fungi. Microbiome 6, 152 (2018). (PMID: 30172257611958410.1186/s40168-018-0538-9)
Danese, S. & Fiocchi, C. Ulcerative colitis. N. Engl. J. Med. 365, 1713–1725 (2011). (PMID: 2204756210.1056/NEJMra1102942)
Fan, D. et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 21, 808–814 (2015). (PMID: 26053625449625910.1038/nm.3871)
Jawhara, S. et al. Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. J. Infect. Dis. 197, 972–980 (2008). (PMID: 1841953310.1086/528990)
Marakalala, M. J. et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS Pathog. 9, e1003315 (2013). (PMID: 23637604363019110.1371/journal.ppat.1003315)
Liang, S. H. et al. Hemizygosity enables a mutational transition governing fungal virulence and commensalism. Cell Host Microbe 25, 418–431.e6 (2019). (PMID: 30824263662485210.1016/j.chom.2019.01.005)
Schonherr, F. A. et al. The intraspecies diversity of C. albicans triggers qualitatively and temporally distinct host responses that determine the balance between commensalism and pathogenicity. Mucosal Immunol. 10, 1335–1350 (2017). (PMID: 2817678910.1038/mi.2017.2)
Forche, A. et al. Selection of Candida albicans trisomy during oropharyngeal infection results in a commensal-like phenotype. PLoS Genet. 15, e1008137 (2019). (PMID: 31091232653819210.1371/journal.pgen.1008137)
Tso, G. H. W. et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science 362, 589–595 (2018). (PMID: 3038557910.1126/science.aat0537)
Kasper, L. et al. The fungal peptide toxin candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun. 9, 4260 (2018). (PMID: 30323213618914610.1038/s41467-018-06607-1)
Wellington, M., Koselny, K., Sutterwala, F. S. & Krysan, D. J. Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryot. Cell 13, 329–340 (2014). (PMID: 24376002391096710.1128/EC.00336-13)
Uwamahoro, N. et al. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. mBio 5, e00003–14 (2014). (PMID: 24667705397734910.1128/mBio.00003-14)
Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68 (2016). (PMID: 27027296485123610.1038/nature17625)
Verma, A. H. et al. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci. Immunol. 2, eaam8834 (2017). (PMID: 29101209588138710.1126/sciimmunol.aam8834)
Naglik, J. R., Gaffen, S. L. & Hube, B. Candidalysin: discovery and function in Candida albicans infections. Curr. Opin. Microbiol. 52, 100–109 (2019). (PMID: 31288097668750310.1016/j.mib.2019.06.002)
Pierce, J. V. & Kumamoto, C. A. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. mBio 3, e00117–12 (2012). (PMID: 22829676341340010.1128/mBio.00117-12)
Witchley, J. N. et al. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host Microbe 25, 432–443 (2019). (PMID: 30870623658106510.1016/j.chom.2019.02.008)
Li, X. et al. Response to fungal dysbiosis by gut-resident CX3CR1 + mononuclear phagocytes aggravates allergic airway disease. Cell Host Microbe 24, 847–856 (2018). (PMID: 30503509629273910.1016/j.chom.2018.11.003)
Rohde, C. M. et al. Metabonomic evaluation of Schaedler altered microflora rats. Chem. Res. Toxicol. 20, 1388–1392 (2007). (PMID: 1790017010.1021/tx700184u)
Schaedler, R. W., Dubos, R. & Costello, R. The development of the bacterial flora in the gastrointestinal tract of mice. J. Exp. Med. 122, 59–66 (1965). (PMID: 14325473213802410.1084/jem.122.1.59)
Witchley, J. N., Basso, P., Brimacombe, C. A., Abon, N. V. & Noble, S. M. Recording of DNA-binding events reveals the importance of a repurposed Candida albicans regulatory network for gut commensalism. Cell Host Microbe 29, 1002–1013 (2021). (PMID: 33915113821620410.1016/j.chom.2021.03.019)
Vyas, V. K. et al. New CRISPR mutagenesis strategies reveal variation in repair mechanisms among fungi. mSphere 3, e00154–18 (2018). (PMID: 29695624591742910.1128/mSphere.00154-18)
Vyas, V. K., Barrasa, M. I. & Fink, G. R. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci. Adv. 1, e1500248 (2015). (PMID: 25977940442834710.1126/sciadv.1500248)
Selmecki, A., Forche, A. & Berman, J. Genomic plasticity of the human fungal pathogen Candida albicans. Eukaryot. Cell 9, 991–1008 (2010). (PMID: 20495058290167410.1128/EC.00060-10)
MacCallum, D. M. et al. Property differences among the four major Candida albicans strain clades. Eukaryot. Cell 8, 373–387 (2009). (PMID: 19151328265325010.1128/EC.00387-08)
Ropars, J. et al. Gene flow contributes to diversification of the major fungal pathogen Candida albicans. Nat. Commun. 9, 2253 (2018). (PMID: 29884848599373910.1038/s41467-018-04787-4)
Butler, G. et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459, 657–662 (2009). (PMID: 19465905283426410.1038/nature08064)
Drummond, R. A. et al. CARD9 + microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment. Nat. Immunol. 20, 559–570 (2019). (PMID: 30996332649447410.1038/s41590-019-0377-2)
Shouval, D. S. et al. Interleukin 1β mediates intestinal inflammation in mice and patients with interleukin 10 receptor deficiency. Gastroenterology 151, 1100–1104 (2016). (PMID: 2769332310.1053/j.gastro.2016.08.055)
Friedrich, M. et al. IL-1-driven stromal–neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat. Med. 27, 1970–1981 (2021).
Mogavero, S. et al. Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by Candida albicans. Cell. Microbiol. 23, e13378 (2021). (PMID: 34245079)
Longman, R. S. et al. CX 3 CR1 + mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J. Exp. Med. 211, 1571–1583 (2014). (PMID: 25024136411393810.1084/jem.20140678)
Hepworth, M. R. et al. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4 + T cells. Science 348, 1031–1035 (2015). (PMID: 25908663444982210.1126/science.aaa4812)
Tang, J., Iliev, I. D., Brown, J., Underhill, D. M. & Funari, V. A. Mycobiome: approaches to analysis of intestinal fungi. J. Immunol. Methods 421, 112–121 (2015). (PMID: 25891793445137710.1016/j.jim.2015.04.004)
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). (PMID: 223171210.1016/S0022-2836(05)80360-2)
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 19451168270523410.1093/bioinformatics/btp324)
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). (PMID: 20644199292850810.1101/gr.107524.110)
Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012). (PMID: 23060615351945410.1093/bioinformatics/bts606)
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014). (PMID: 2493013910.1093/bioinformatics/btu393)
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021). (PMID: 33590861793181910.1093/gigascience/giab008)
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (PMID: 20110278283282410.1093/bioinformatics/btq033)
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012). (PMID: 22506599334251910.1089/cmb.2012.0021)
Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015). (PMID: 26099265459590410.1093/bioinformatics/btv383)
معلومات مُعتمدة: R37 DE022550 United States DE NIDCR NIH HHS; United Kingdom WT_ Wellcome Trust; F32 DK120228 United States DK NIDDK NIH HHS; R01 DK113136 United States DK NIDDK NIH HHS; R01 DK121977 United States DK NIDDK NIH HHS; R21 AI146957 United States AI NIAID NIH HHS; R01 AI163007 United States AI NIAID NIH HHS; 214229_Z_18_Z United Kingdom WT_ Wellcome Trust
تواريخ الأحداث: Date Created: 20220317 Date Completed: 20220415 Latest Revision: 20240615
رمز التحديث: 20240615
مُعرف محوري في PubMed: PMC9166917
DOI: 10.1038/s41586-022-04502-w
PMID: 35296857
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-022-04502-w