دورية أكاديمية

Laser Powder Bed Fusion Additive Manufacturing of a Low-Modulus Ti-35Nb-7Zr-5Ta Alloy for Orthopedic Applications.

التفاصيل البيبلوغرافية
العنوان: Laser Powder Bed Fusion Additive Manufacturing of a Low-Modulus Ti-35Nb-7Zr-5Ta Alloy for Orthopedic Applications.
المؤلفون: Nadammal N; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India., Rajput M; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India., Gupta SK; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India., Ivanov E; Tosoh SMD Inc., Grove City, Ohio 43123, United States., Reddy AS; Intech Additive Solutions, Peenya Industrial Area, Bangalore 560058, India., Suwas S; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India., Chatterjee K; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
المصدر: ACS omega [ACS Omega] 2022 Mar 01; Vol. 7 (10), pp. 8506-8517. Date of Electronic Publication: 2022 Mar 01 (Print Publication: 2022).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101691658 Publication Model: eCollection Cited Medium: Internet ISSN: 2470-1343 (Electronic) Linking ISSN: 24701343 NLM ISO Abbreviation: ACS Omega Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Washington, D.C. : American Chemical Society, [2016]-
مستخلص: Laser powder bed fusion (L-PBF) was attempted here to additively manufacture a new generation orthopedic β titanium alloy Ti-35Nb-7Zr-5Ta toward engineering patient-specific implants. Parts were fabricated using four different values of energy density (ED) input ranging from 46.6 to 54.8 J/mm 3 through predefined laser beam parameters from prealloyed powders. All the conditions yielded parts of >98.5% of theoretical density. X-ray microcomputed tomography analyses of the fabricated parts revealed minimal imperfections with enhanced densification at a higher ED input. X-ray diffraction analysis indicated a marginally larger d -spacing and tensile residual stress at the highest ED input that is ascribed to the steeper temperature gradients. Cellular to columnar dendritic transformation was observed at the highest ED along with an increase in the size of the solidified features indicating the synergetic effects of the temperature gradient and solidification growth rate. Density measurements indicated ≈99.5% theoretical density achieved for an ED of 50.0 J/mm 3 . The maximum tensile strength of ≈660 MPa was obtained at an ED of 54.8 J/mm 3 through the formation of the columnar dendritic substructure. High ductility ranging from 25 to 30% was observed in all the fabricated parts irrespective of ED. The assessment of cytocompatibility in vitro indicated good attachment and proliferation of osteoblasts on the fabricated samples that were similar to the cell response on commercially pure titanium, confirming the potential of the additively manufactured Ti-35Nb-7Zr-5Ta as a suitable material for biomedical applications. Taken together, these results demonstrate the feasibility of L-PBF of Ti-35Nb-7Zr-5Ta for potentially engineering patient-specific orthopedic implants.
Competing Interests: The authors declare no competing financial interest.
(© 2022 The Authors. Published by American Chemical Society.)
References: Acta Biomater. 2016 Oct 15;44:16-30. (PMID: 27521496)
Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109755. (PMID: 31349485)
Nanoscale. 2021 Feb 4;13(4):2286-2301. (PMID: 33481967)
Nanomaterials (Basel). 2020 Jul 28;10(8):. (PMID: 32731588)
Morphologie. 2018 Dec;102(339):231-242. (PMID: 30348489)
Mater Sci Eng C Mater Biol Appl. 2019 Sep;102:844-862. (PMID: 31147056)
J Appl Biomater Funct Mater. 2018 Apr;16(2):57-67. (PMID: 28967051)
J Mech Behav Biomed Mater. 2018 Feb;78:224-234. (PMID: 29175491)
Biomaterials. 2016 Mar;83:127-41. (PMID: 26773669)
Indian J Orthop. 2019 Jan-Feb;53(1):148-153. (PMID: 30905995)
Regen Biomater. 2016 Sep;3(3):173-85. (PMID: 27252887)
J Prosthodont Res. 2020 Oct;64(4):490-497. (PMID: 32063537)
ACS Biomater Sci Eng. 2018 Sep 10;4(9):3132-3142. (PMID: 33435054)
J Mech Behav Biomed Mater. 2018 Feb;78:124-133. (PMID: 29156291)
J Mech Behav Biomed Mater. 2021 Jul;119:104552. (PMID: 33934037)
Biomaterials. 2004 Nov;25(26):5705-13. (PMID: 15147816)
Acta Biomater. 2008 Mar;4(2):305-17. (PMID: 18006397)
P T. 2014 Oct;39(10):704-11. (PMID: 25336867)
تواريخ الأحداث: Date Created: 20220321 Latest Revision: 20220322
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8928530
DOI: 10.1021/acsomega.1c06261
PMID: 35309459
قاعدة البيانات: MEDLINE
الوصف
تدمد:2470-1343
DOI:10.1021/acsomega.1c06261