دورية أكاديمية

Antibody-Oligonucleotide Conjugation Using a SPAAC Copper-Free Method Compatible with 10× Genomics' Single-Cell RNA-Seq.

التفاصيل البيبلوغرافية
العنوان: Antibody-Oligonucleotide Conjugation Using a SPAAC Copper-Free Method Compatible with 10× Genomics' Single-Cell RNA-Seq.
المؤلفون: Lee DP; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore., Ray WJ; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore., Mei TP; Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore., Hoon S; Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore., Scolnick J; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore., Yeo GW; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. gene.w.yeo@gmail.com.; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA. gene.w.yeo@gmail.com.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2022; Vol. 2463, pp. 67-80.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Oligonucleotides*/genetics , Proteomics*, Antibodies ; Click Chemistry/methods ; RNA-Seq
مستخلص: Recent advances in multimodal approaches toward single-cell analyses present valuable data points that can complement standard flow cytometry data. In particular, the overlay of cell-surface proteome data with gene expression analysis presents a necessary advancement, particularly in the field of immunology. Here we describe a copper-free click chemistry method for the generation of antibody-oligonucleotide complexes and present the steps for its employment in the context of the 10× genomics droplet-based single-cell RNA-seq workflow, providing a method for coupling proteomic and transcriptomic analyses in an efficient and cost-effect manner.
(© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Lee J, Hyeon DY, Hwang D (2020) Single-cell multiomics: technologies and data analysis methods. Exp Mol Med 52:1428–1442. https://doi.org/10.1038/s12276-020-0420-2. (PMID: 10.1038/s12276-020-0420-2329292258080692)
Peterson VM, Zhang KX, Kumar N et al (2017) Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol 35:936–939. https://doi.org/10.1038/nbt.3973. (PMID: 10.1038/nbt.397328854175)
Stoeckius M, Hafemeister C, Stephenson W et al (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14:865–868. https://doi.org/10.1038/nmeth.4380. (PMID: 10.1038/nmeth.4380287590295669064)
Hershey JWB, Sonenberg N, Mathews MB (2012) Principles of translational control: an overview. Cold Spring Harb Perspect Biol 4:a011528–a011528. https://doi.org/10.1101/cshperspect.a011528. (PMID: 10.1101/cshperspect.a011528232091533504442)
Truitt ML, Ruggero D (2016) New frontiers in translational control of the cancer genome. Nat Rev Cancer 16:288–304. https://doi.org/10.1038/nrc.2016.27. (PMID: 10.1038/nrc.2016.27271122075491099)
Istomine R, Pavey N, Piccirillo CA (2016) Posttranscriptional and translational control of gene regulation in CD4 + T cell subsets. J Immunol 196:533–540. https://doi.org/10.4049/jimmunol.1501337. (PMID: 10.4049/jimmunol.150133726747571)
Qiu P (2020) Embracing the dropouts in single-cell RNA-seq analysis. Nat Commun 11:1169. https://doi.org/10.1038/s41467-020-14976-9. (PMID: 10.1038/s41467-020-14976-9321275407054558)
Mair F, Erickson JR, Voillet V et al (2020) A targeted multi-omic analysis approach measures protein expression and low-abundance transcripts on the single-cell level. Cell Rep 31:107499. https://doi.org/10.1016/j.celrep.2020.03.063. (PMID: 10.1016/j.celrep.2020.03.063322680807224638)
McKinnon KM (2018) Flow cytometry: an overview. Curr Protoc Immunol 120:5.1.1. https://doi.org/10.1002/cpim.40. (PMID: 10.1002/cpim.40)
Landhuis E (2018) Single-cell approaches to immune profiling. Nature 557:595–597. https://doi.org/10.1038/d41586-018-05214-w. (PMID: 10.1038/d41586-018-05214-w29789748)
Gibellini L, De Biasi S, Porta C et al (2020) Single-cell approaches to profile the response to immune checkpoint inhibitors. Front Immunol 11:490. https://doi.org/10.3389/fimmu.2020.00490. (PMID: 10.3389/fimmu.2020.00490322659337100547)
Stoeckius M, Zheng S, Houck-Loomis B et al (2018) Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol 19:224. https://doi.org/10.1186/s13059-018-1603-1. (PMID: 10.1186/s13059-018-1603-13056757430567574)
Sano T, Smith C, Cantor C (1992) Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258:120–122. https://doi.org/10.1126/science.1439758. (PMID: 10.1126/science.14397581439758)
Becer CR, Hoogenboom R, Schubert US (2009) Click chemistry beyond metal-catalyzed cycloaddition. Angew Chem Int Ed 48:4900–4908. https://doi.org/10.1002/anie.200900755. (PMID: 10.1002/anie.200900755)
Dugal-Tessier J, Thirumalairajan S, Jain N (2021) Antibody-oligonucleotide conjugates: a twist to antibody-drug conjugates. J Clin Med 10:838. https://doi.org/10.3390/jcm10040838. (PMID: 10.3390/jcm10040838336706897922418)
Adler M, Wacker R, Niemeyer CM (2008) Sensitivity by combination: immuno-PCR and related technologies. Analyst 133:702. https://doi.org/10.1039/b718587c. (PMID: 10.1039/b718587c18493669)
Manova RK, Pujari SP, Weijers CAGM et al (2012) Copper-free click biofunctionalization of silicon nitride surfaces via strain-promoted alkyne–azide cycloaddition reactions. Langmuir 28:8651–8663. https://doi.org/10.1021/la300921e. (PMID: 10.1021/la300921e22642374)
van Hest JCM, van Delft FL (2011) Protein modification by strain-promoted alkyne-azide cycloaddition. ChemBioChem 12:1309–1312. https://doi.org/10.1002/cbic.201100206. (PMID: 10.1002/cbic.20110020621557431)
Gong H, Holcomb I, Ooi A et al (2016) Simple method to prepare oligonucleotide-conjugated antibodies and its application in multiplex protein detection in single cells. Bioconjug Chem 27:217–225. https://doi.org/10.1021/acs.bioconjchem.5b00613. (PMID: 10.1021/acs.bioconjchem.5b0061326689321)
Buus TB, Herrera A, Ivanova E et al (2021) Improving oligo-conjugated antibody signal in multimodal single-cell analysis. elife 10:e61973. https://doi.org/10.7554/eLife.61973. (PMID: 10.7554/eLife.61973338611998051954)
فهرسة مساهمة: Keywords: 10× Genomics; Antibody conjugation; Multi-omics; SPAAC; Single-cell RNA-seq; Single-cell proteomics
المشرفين على المادة: 0 (Antibodies)
0 (Oligonucleotides)
تواريخ الأحداث: Date Created: 20220328 Date Completed: 20220401 Latest Revision: 20220623
رمز التحديث: 20231215
DOI: 10.1007/978-1-0716-2160-8_6
PMID: 35344168
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-2160-8_6