دورية أكاديمية

Synergies and prospects for early resolution of the neutrino mass ordering.

التفاصيل البيبلوغرافية
العنوان: Synergies and prospects for early resolution of the neutrino mass ordering.
المؤلفون: Cabrera A; APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité University, 75205, Paris Cedex 13, France.; IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France.; LNCA Underground Laboratory, CNRS/IN2P3-CEA, Chooz, France., Han Y; APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité University, 75205, Paris Cedex 13, France.; IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France., Obolensky M; APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité University, 75205, Paris Cedex 13, France., Cavalier F; IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France., Coelho J; IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France., Navas-Nicolás D; IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France., Nunokawa H; IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France.; Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, 22451-900, Brazil., Simard L; IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France., Bian J; Department of Physics and Astronomy, University of California at Irvine, Irvine, CA, 92697, USA., Nayak N; Department of Physics and Astronomy, University of California at Irvine, Irvine, CA, 92697, USA., Ochoa-Ricoux JP; Department of Physics and Astronomy, University of California at Irvine, Irvine, CA, 92697, USA., Roskovec B; Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic., Chimenti P; Departamento de Física, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil. pietro.chimenti@uel.br., Dusini S; INFN, Sezione di Padova, via Marzolo 8, 35131, Padua, Italy. stefano.dusini@pd.infn.it., Bongrand M; IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France.; SUBATECH, CNRS/IN2P3, Université de Nantes, IMT-Atlantique, 44307, Nantes, France., Karaparambil R; SUBATECH, CNRS/IN2P3, Université de Nantes, IMT-Atlantique, 44307, Nantes, France., Lebrin V; SUBATECH, CNRS/IN2P3, Université de Nantes, IMT-Atlantique, 44307, Nantes, France., Viaud B; SUBATECH, CNRS/IN2P3, Université de Nantes, IMT-Atlantique, 44307, Nantes, France., Yermia F; SUBATECH, CNRS/IN2P3, Université de Nantes, IMT-Atlantique, 44307, Nantes, France., Asquith L; Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, UK., Bezerra TJC; Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, UK., Hartnell J; Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, UK., Lasorak P; Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, UK., Ling J; Sun Yat-sen University, NO. 135 Xingang Xi Road, Guangzhou, 510275, China., Liao J; Sun Yat-sen University, NO. 135 Xingang Xi Road, Guangzhou, 510275, China., Yu H; Sun Yat-sen University, NO. 135 Xingang Xi Road, Guangzhou, 510275, China.
المصدر: Scientific reports [Sci Rep] 2022 Mar 30; Vol. 12 (1), pp. 5393. Date of Electronic Publication: 2022 Mar 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مستخلص: The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of [Formula: see text] and [Formula: see text] using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB[Formula: see text]B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ([Formula: see text]) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is [Formula: see text], or LB[Formula: see text]B experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB[Formula: see text]B experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of [Formula: see text] by LB[Formula: see text]B experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model.
(© 2022. The Author(s).)
References: Nunokawa, H., Parke, S. J. & Valle, J. W. F. CP violation and neutrino oscillations. Prog. Part. Nucl. Phys. 60, 338–402 (2008). (PMID: 10.1016/j.ppnp.2007.10.001)
Pontecorvo, B. Neutrino experiments and the problem of conservation of leptonic charge. Sov. Phys. JETP 26, 984–988 (1968).
Maki, Z., Nakagawa, M. & Sakata, S. Remarks on the unified model of elementary particles. Prog. Theor. Phys. 28, 870–880 (1962). (PMID: 10.1143/PTP.28.870)
Zyla, P. A. et al. Review of particle physics. To appear PTEP 2020, 083C01 (2020).
Cleveland, B. T. et al. Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J. 496, 505–526 (1998). (PMID: 10.1086/305343)
Hampel, W. et al. GALLEX solar neutrino observations: Results for GALLEX IV. Phys. Lett. B 447, 127–133 (1999). (PMID: 10.1016/S0370-2693(98)01579-2)
Abdurashitov, J. N. et al. Measurement of the solar neutrino capture rate with gallium metal. Phys. Rev. C 60, 055801 (1999). (PMID: 10.1103/PhysRevC.60.055801)
Ahmad, Q. R. et al. Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002). (PMID: 1209702510.1103/PhysRevLett.89.011301)
Fukuda, S. et al. Solar B-8 and hep neutrino measurements from 1258 days of Super-Kamiokande data. Phys. Rev. Lett. 86, 5651–5655 (2001). (PMID: 1141532510.1103/PhysRevLett.86.5651)
Eguchi, K. et al. First results from KamLAND: Evidence for reactor anti-neutrino disappearance. Phys. Rev. Lett. 90, 021802 (2003). (PMID: 1257053610.1103/PhysRevLett.90.021802)
Mikheyev, S. P. & Smirnov, A. Y. Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys. 42, 913–917 (1985).
Wolfenstein, L. Neutrino oscillations in matter. Phys. Rev. D 17, 2369–2374 (1978). (PMID: 10.1103/PhysRevD.17.2369)
Dolinski, M. J., Poon, A. W. P. & Rodejohann, W. Neutrinoless double-beta decay: Status and prospects. Ann. Rev. Nucl. Part. Sci. 69, 219–251 (2019). (PMID: 10.1146/annurev-nucl-101918-023407)
King, S. F. Neutrino mass models. Rep. Prog. Phys. 67, 107–158 (2004). (PMID: 10.1088/0034-4885/67/2/R01)
Dighe, A. S., Yu, A. & Smirnov,. Identifying the neutrino mass spectrum from the neutrino burst from a supernova. Phys. Rev. D 62, 033007 (2000). (PMID: 10.1103/PhysRevD.62.033007)
Hannestad, S. & Schwetz, T. Cosmology and the neutrino mass ordering. JCAP 11, 035 (2016). (PMID: 10.1088/1475-7516/2016/11/035)
Esteban, I., Gonzalez-Garcia, M. C., Hernandez-Cabezudo, A., Maltoni, M. & Schwetz, T. Global analysis of three-flavour neutrino oscillations: Synergies and tensions in the determination of [Formula: see text], [Formula: see text], and the mass ordering. JHEP 01, 106 (2019). (PMID: 10.1007/JHEP01(2019)106)
de Salas, P. F. et al. 2020 global reassessment of the neutrino oscillation picture. JHEP 02, 071 (2021). (PMID: 10.1007/JHEP02(2021)071)
Capozzi, F., Lisi, E., Marrone, A. & Palazzo, A. Current unknowns in the three neutrino framework. Prog. Part. Nucl. Phys. 102, 48–72 (2018). (PMID: 10.1016/j.ppnp.2018.05.005)
The XXIX International Conference on Neutrino Physics and Astrophysics, Neutrino 2020, June 22–July 2, 2020. https://conferences.fnal.gov/nu2020/ , (2020).
Esteban, I., Gonzalez-Garcia, M. C., Maltoni, M., Schwetz, T. & Zhou, A. The fate of hints: Updated global analysis of three-flavor neutrino oscillations. JHEP 09, 178 (2020). (PMID: 10.1007/JHEP09(2020)178)
Blennow, M., Coloma, P., Huber, P. & Schwetz, T. Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering. JHEP 03, 028 (2014). (PMID: 10.1007/JHEP03(2014)028)
Petcov, S. T. & Piai, M. The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments. Phys. Lett. B 533, 94–106 (2002). (PMID: 10.1016/S0370-2693(02)01591-5)
An, F. et al. Neutrino physics with JUNO. J. Phys. G 43(3), 030401 (2016). (PMID: 10.1088/0954-3899/43/3/030401)
Li, Y.-F., Wang, Y. & Xing, Z. Terrestrial matter effects on reactor antineutrino oscillations at JUNO or RENO-50: How small is small?. Chin. Phys. C 40(9), 091001 (2016). (PMID: 10.1088/1674-1137/40/9/091001)
Ahn, M. H. et al. Indications of neutrino oscillation in a 250 km long baseline experiment. Phys. Rev. Lett. 90, 041801 (2003). (PMID: 1257041010.1103/PhysRevLett.90.041801)
Adamson, P. et al. Improved search for muon-neutrino to electron-neutrino oscillations in MINOS. Phys. Rev. Lett. 107, 181802 (2011). (PMID: 2210762310.1103/PhysRevLett.107.181802)
Agafonova, N. et al. Observation of a first [Formula: see text] candidate in the OPERA experiment in the CNGS beam. Phys. Lett. B 691, 138–145 (2010). (PMID: 10.1016/j.physletb.2010.06.022)
Ayres, D.S. et al. NOvA: Proposal to Build a 30 Kiloton Off-Axis Detector to Study [Formula: see text] Oscillations in the NuMI Beamline, FERMILAB-PROPOSAL-0929, arXiv:hep-ex/0503053 . (2004).
Abe, K. et al. The T2K experiment. Nucl. Instrum. Methods A 659, 106–135 (2011). (PMID: 10.1016/j.nima.2011.06.067)
Abi, Babak et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II DUNE Physics. arXiv:2002.03005 [hep-ex]. (2020).
Abe, K. et al. Hyper-Kamiokande Design Report, arXiv:1805.04163 [physics.ins-det]. (2018).
Abe, K. et al. Physics potentials with the second Hyper-Kamiokande detector in Korea. PTEP 2018(6), 063C01 (2018).
Fukuda, Y. et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998). (PMID: 10.1103/PhysRevLett.81.1562)
Aartsen, M. G. et al. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Phys. Rev. D 91(7), 072004 (2015). (PMID: 10.1103/PhysRevD.91.072004)
Ahmed, S. et al. Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO). Pramana 88(5), 79 (2017). (PMID: 10.1007/s12043-017-1373-4)
Ulrich F. Katz. The ORCA Option for KM3NeT. arXiv:1402.1022 [astro-ph.IM]. PoS, (2014).
Aartsen, M.G. et al. Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU). arXiv:1401.2046 [physics.ins-det]. (1 2014).
Fogli, G. L. & Lisi, E. Tests of three flavor mixing in long baseline neutrino oscillation experiments. Phys. Rev. D 54, 3667–3670 (1996). (PMID: 10.1103/PhysRevD.54.3667)
Adey, D. et al. Measurement of the electron antineutrino oscillation with 1958 days of operation at Daya bay. Phys. Rev. Lett. 121(24), 241805 (2018). (PMID: 3060872810.1103/PhysRevLett.121.241805)
de Kerret, H. et al. Double Chooz [Formula: see text] measurement via total neutron capture detection. Nat. Phys. 16(5), 558–564 (2020).
Bak, G. et al. Measurement of reactor antineutrino oscillation amplitude and frequency at RENO. Phys. Rev. Lett. 121(20), 201801 (2018). (PMID: 3050026210.1103/PhysRevLett.121.201801)
Nunokawa, H., Parke, S. J. & Funchal, R. Z. Another possible way to determine the neutrino mass hierarchy. Phys. Rev. D 72, 013009 (2005). (PMID: 10.1103/PhysRevD.72.013009)
Li, Y.-F., Cao, J., Wang, Y. & Zhan, L. Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos. Phys. Rev. D 88, 013008 (2013). (PMID: 10.1103/PhysRevD.88.013008)
Blennow, M. & Schwetz, T. Determination of the neutrino mass ordering by combining PINGU and Daya Bay II. JHEP 09, 089 (2013). (PMID: 10.1007/JHEP09(2013)089)
Bandyopadhyay, A. Physics at a future Neutrino Factory and super-beam facility. Rep. Prog. Phys. 72, 106201 (2009). (PMID: 10.1088/0034-4885/72/10/106201)
Abusleme, A. et al. TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution. arXiv:2005.08745 [physics.ins-det]. (2020).
Abusleme, A. et al. JUNO Physics and Detector. arXiv:2104.02565 [hep-ex]. (2021).
Choubey, S., Petcov, S. T. & Piai, M. Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment. Phys. Rev. D 68, 113006 (2003). (PMID: 10.1103/PhysRevD.68.113006)
Minakata, H., Nunokawa, H., Parke, S. J. & Funchal, R. Z. Determining neutrino mass hierarchy by precision measurements in electron and muon neutrino disappearance experiments. Phys. Rev. D 74, 053008 (2006). (PMID: 10.1103/PhysRevD.74.053008)
Forero, D. V., Parke, S. J., Ternes, C. A. & Funchal, Renata Zukanovich. JUNO’s prospects for determining the neutrino mass ordering. arXiv:2107.12410 [physics.hep-ph]. (2021).
Talk presented by Patrick Dunne at The XXIX International Conference on Neutrino Physics and Astrophysics, Neutrino 2020, June 22–July 2, 2020. https://conferences.fnal.gov/nu2020/ , (2020).
Acero, M. A. et al. An Improved Measurement of Neutrino Oscillation Parameters by the NOvA Experiment, arXiv:2108.08219 [hep-ex]. (2021).
Abe, K. et al. Sensitivity of the T2K accelerator-based neutrino experiment with an Extended run to [Formula: see text] POT, arXiv:1607.08004 [hep-ex]. (2016).
Athar, M. S. et al. IUPAP Neutrino Panel White Paper. https://indico.cern.ch/event/1065120/contributions/4578196/attachments/2330827/3971940/Neutrino_Panel_White_Paper.pdf , (2021).
Abe, K. et al. Neutrino oscillation physics potential of the T2K experiment. PTEP 2015(4), 043C01 (2015).
Talk presented by Alex Himmel at The XXIX International Conference on Neutrino Physics and Astrophysics, Neutrino 2020, June 22–July 2, 2020. https://conferences.fnal.gov/nu2020/ , (2020).
Kelly, K. J., Machado, P. A. N., Parke, S. J., Perez-Gonzalez, Y. F. & Funchal, R. Z. Neutrino mass ordering in light of recent data. Phys. Rev. D 103(1), 013004 (2021). (PMID: 10.1103/PhysRevD.103.013004)
Aartsen, M. G. et al. Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU. Phys. Rev. D 101(3), 032006 (2020). (PMID: 10.1103/PhysRevD.101.032006)
KM3NeT-ORCA and JUNO combined sensitivity to the neutrino masse ordering. Poster presented by Chau, Nhan. The XXIX International Conference on Neutrino Physics and Astrophysics. Neutrino 2020, June 22–July 2, 2020. https://conferences.fnal.gov/nu2020/ , (2020).
Cao, S. et al. Physics potential of the combined sensitivity of T2K-II, NO[Formula: see text]A extension, and JUNO. Phys. Rev. D 103(11), 112010 (2021). (PMID: 10.1103/PhysRevD.103.112010)
Denton, P. B., Gehrlein, J. & Pestes, R. [Formula: see text] -Violating neutrino nonstandard interactions in long-baseline-accelerator data. Phys. Rev. Lett. 126(5), 051801 (2021). (PMID: 3360574210.1103/PhysRevLett.126.051801)
Capozzi, F., Chatterjee, S. S. & Palazzo, A. Neutrino mass ordering obscured by nonstandard interactions. Phys. Rev. Lett. 124(11), 111801 (2020). (PMID: 3224270010.1103/PhysRevLett.124.111801)
Abusleme, A. et al. Calibration strategy of the JUNO experiment. JHEP 03, 004 (2021). (PMID: 10.1007/JHEP03(2021)004)
تواريخ الأحداث: Date Created: 20220331 Latest Revision: 20221024
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8967831
DOI: 10.1038/s41598-022-09111-1
PMID: 35354838
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-022-09111-1