دورية أكاديمية

ACKR3 regulates platelet activation and ischemia-reperfusion tissue injury.

التفاصيل البيبلوغرافية
العنوان: ACKR3 regulates platelet activation and ischemia-reperfusion tissue injury.
المؤلفون: Rohlfing AK; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Kolb K; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Sigle M; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Ziegler M; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Bild A; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Münzer P; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Sudmann J; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Dicenta V; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Harm T; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Manke MC; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.; DFG Heisenberg Group Thrombocardiology, University of Tübingen, Tübingen, Germany., Geue S; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Kremser M; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Chatterjee M; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Liang C; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany., von Eysmondt H; Institute of Applied Physics, University of Tübingen, Tübingen, Germany., Dandekar T; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany., Heinzmann D; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Günter M; Department of Dendritic Cells in Infection and Cancer, German Cancer Research Centre, Heidelberg, Germany., von Ungern-Sternberg S; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Büttcher M; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Castor T; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Mencl S; Department of Neurology, University Hospital Essen, Essen, Germany., Langhauser F; Department of Neurology, University Hospital Essen, Essen, Germany., Sies K; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.; Department of Dermatology, University of Heidelberg, Heidelberg, Germany., Ashour D; Immunocardiology Lab, University Hospital Würzburg, Comprehensive Heart Failure Center (CHFC), Würzburg, Germany., Beker MC; Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey., Lämmerhofer M; University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Tübingen, Germany., Autenrieth SE; Department of Dendritic Cells in Infection and Cancer, German Cancer Research Centre, Heidelberg, Germany., Schäffer TE; Institute of Applied Physics, University of Tübingen, Tübingen, Germany., Laufer S; Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany., Szklanna P; Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland., Maguire P; Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland., Heikenwalder M; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany., Müller KAL; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Hermann DM; Vascular Neurology, Dementia and Ageing Research, Department of Neurology, Essen, Germany., Kilic E; Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey., Stumm R; Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany., Ramos G; Immunocardiology Lab, University Hospital Würzburg, Comprehensive Heart Failure Center (CHFC), Würzburg, Germany., Kleinschnitz C; Department of Neurology, University Hospital Essen, Essen, Germany., Borst O; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.; DFG Heisenberg Group Thrombocardiology, University of Tübingen, Tübingen, Germany., Langer HF; University Hospital, Medical Clinic II, University Heart Center, Lübeck, Germany.; DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany., Rath D; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany., Gawaz M; Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany. meinrad.gawaz@med.uni-tuebingen.de.
المصدر: Nature communications [Nat Commun] 2022 Apr 05; Vol. 13 (1), pp. 1823. Date of Electronic Publication: 2022 Apr 05.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Reperfusion Injury*/genetics , Reperfusion Injury*/metabolism , Thrombosis*/metabolism, Animals ; Blood Platelets/metabolism ; Humans ; Mice ; Platelet Activation ; Reperfusion
مستخلص: Platelet activation plays a critical role in thrombosis. Inhibition of platelet activation is a cornerstone in treatment of acute organ ischemia. Platelet ACKR3 surface expression is independently associated with all-cause mortality in CAD patients. In a novel genetic mouse strain, we show that megakaryocyte/platelet-specific deletion of ACKR3 results in enhanced platelet activation and thrombosis in vitro and in vivo. Further, we performed ischemia/reperfusion experiments (transient LAD-ligation and tMCAO) in mice to assess the impact of genetic ACKR3 deficiency in platelets on tissue injury in ischemic myocardium and brain. Loss of platelet ACKR3 enhances tissue injury in ischemic myocardium and brain and aggravates tissue inflammation. Activation of platelet-ACKR3 via specific ACKR3 agonists inhibits platelet activation and thrombus formation and attenuates tissue injury in ischemic myocardium and brain. Here we demonstrate that ACKR3 is a critical regulator of platelet activation, thrombus formation and organ injury following ischemia/reperfusion.
(© 2022. The Author(s).)
References: Ziegler, M. et al. A single-chain antibody-CD39 fusion protein targeting activated platelets protects from cardiac ischaemia/reperfusion injury. Eur. Heart J. 39, 111–116 (2018). (PMID: 28472483)
Schuhmann, M. K., Langhauser, F., Kraft, P. & Kleinschnitz, C. B cells do not have a major pathophysiologic role in acute ischemic stroke in mice. J. Neuroinflammation 14, 112 (2017). (PMID: 28576128545773310.1186/s12974-017-0890-x)
Massberg, S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J. Exp. Med. 196, 887–896 (2002). (PMID: 12370251219402510.1084/jem.20012044)
Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9, 61–67 (2003). (PMID: 1248320710.1038/nm810)
Vogel, S. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Investig. 125, 4638–4654 (2015). (PMID: 26551681466578510.1172/JCI81660)
Malehmir, M. et al. Platelet GPIbalpha is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat. Med. 25, 641–655 (2019). (PMID: 3093654910.1038/s41591-019-0379-5)
Gawaz, M., Langer, H. & May, A. E. Platelets in inflammation and atherogenesis. J. Clin. Investig. 115, 3378–3384 (2005). (PMID: 16322783129726910.1172/JCI27196)
May, A. E., Seizer, P. & Gawaz, M. Platelets: inflammatory firebugs of vascular walls. Arterioscler. Thromb. Vasc. Biol. 28, s5–s10 (2008). (PMID: 1817445410.1161/ATVBAHA.107.158915)
Muller, K. A., Chatterjee, M., Rath, D. & Geisler, T. Platelets, inflammation and anti-inflammatory effects of antiplatelet drugs in ACS and CAD. Thromb. Haemost. 114, 498–518 (2015). (PMID: 2622412710.1160/TH14-11-0947)
Ziegler, M., Wang, X. & Peter, K. Platelets in cardiac ischaemia/reperfusion injury: a promising therapeutic target. Cardiovasc. Res. 115, 1178–1188 (2019). (PMID: 30906948652990010.1093/cvr/cvz070)
McFadyen, J. D., Schaff, M. & Peter, K. Current and future antiplatelet therapies: emphasis on preserving haemostasis. Nat. Rev. Cardiol. 15, 181–191 (2018). (PMID: 2929750810.1038/nrcardio.2017.206)
Bye, A. P., Unsworth, A. J. & Gibbins, J. M. Platelet signaling: a complex interplay between inhibitory and activatory networks. J. Thromb. Haemost. 14, 918–930 (2016). (PMID: 26929147487950710.1111/jth.13302)
Chatterjee, M. et al. SDF-1alpha induces differential trafficking of CXCR4-CXCR7 involving cyclophilin A, CXCR7 ubiquitination and promotes platelet survival. FASEB J. 28, 2864–2878 (2014). (PMID: 2466875010.1096/fj.14-249730)
Bachelerie, F. et al. New nomenclature for atypical chemokine receptors. Nat. Immunol. 15, 207–208 (2014). (PMID: 2454906110.1038/ni.2812)
Chatterjee, M. et al. Macrophage migration inhibitory factor limits activation-induced apoptosis of platelets via CXCR7-dependent Akt signaling. Circ. Res. 115, 939–949 (2014). (PMID: 2526636310.1161/CIRCRESAHA.115.305171)
Rath, D. et al. Expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 on circulating platelets of patients with acute coronary syndrome and association with left ventricular functional recovery. Eur. Heart J. 35, 386–394 (2014). (PMID: 2416879210.1093/eurheartj/eht448)
Rath, D. et al. Platelet surface expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 is associated with clinical outcomes in patients with coronary artery disease. J. Thromb. Haemost. 13, 719–728 (2015). (PMID: 2566039510.1111/jth.12870)
Rath, D. et al. Relative survival potential of platelets is associated with platelet CXCR4/CXCR7 surface exposure and functional recovery following STEMI. Atherosclerosis 278, 269–277 (2018). (PMID: 3034238110.1016/j.atherosclerosis.2018.10.008)
Sierro, F. et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc. Natl Acad. Sci. USA 104, 14759–14764 (2007). (PMID: 17804806197622210.1073/pnas.0702229104)
Levi, M., Epshtein, M., Castor, T., Gawaz, M. & Korin, N. Glycoprotein VI (GPVI)-functionalized nanoparticles targeting arterial injury sites under physiological flow. Nanomedicine 29, 102274 (2020). (PMID: 3271217410.1016/j.nano.2020.102274)
Sauter, R. J. et al. Functional relevance of the anaphylatoxin receptor C3aR for platelet function and arterial thrombus formation marks an intersection point between innate immunity and thrombosis. Circulation 138, 1720–1735 (2018). (PMID: 29802205620224410.1161/CIRCULATIONAHA.118.034600)
Geue, S. et al. Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis. Blood 134, 1847–1858 (2019). (PMID: 3157820310.1182/blood.2019000185)
Seizer, P. et al. Extracellular cyclophilin A activates platelets via EMMPRIN (CD147) and PI3K/Akt signaling, which promotes platelet adhesion and thrombus formation in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 35, 655–663 (2015). (PMID: 2555020810.1161/ATVBAHA.114.305112)
Ziegler, M. et al. The bispecific SDF1-GPVI fusion protein preserves myocardial function after transient ischemia in mice. Circulation 125, 685–696 (2012). (PMID: 2222342810.1161/CIRCULATIONAHA.111.070508)
Burns, J. M. et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J. Exp. Med. 203, 2201–2213 (2006). (PMID: 16940167211839810.1084/jem.20052144)
Ulvmar, M. H., Hub, E. & Rot, A. Atypical chemokine receptors. Exp. Cell Res. 317, 556–568 (2011). (PMID: 21272574307252610.1016/j.yexcr.2011.01.012)
Alampour-Rajabi, S. et al. MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis. FASEB J. 29, 4497–4511 (2015). (PMID: 2613909810.1096/fj.15-273904)
Hoffmann, A., Zwissler, L. C., El Bounkari, O. & Bernhagen, J. Studying the pro-migratory effects of MIF. Methods Mol. Biol. 2080, 1–18 (2020). (PMID: 3174586610.1007/978-1-4939-9936-1_1)
Hoffmann, F. et al. Rapid uptake and degradation of CXCL12 depend on CXCR7 carboxyl-terminal serine/threonine residues. J. Biol. Chem. 287, 28362–28377 (2012). (PMID: 22736769343656010.1074/jbc.M111.335679)
Saaber, F. et al. ACKR3 regulation of neuronal migration requires ACKR3 phosphorylation, but not beta-Arrestin. Cell Rep. 26, 1473–1488 e1479 (2019). (PMID: 3072673210.1016/j.celrep.2019.01.049)
Infantino, S., Moepps, B. & Thelen, M. Expression and regulation of the orphan receptor RDC1 and its putative ligand in human dendritic and B cells. J. Immunol. 176, 2197–2207 (2006). (PMID: 1645597610.4049/jimmunol.176.4.2197)
Naumann, U. et al. CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS ONE 5, e9175 (2010). (PMID: 20161793282009110.1371/journal.pone.0009175)
Balabanian, K. et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J. Biol. Chem. 280, 35760–35766 (2005). (PMID: 1610733310.1074/jbc.M508234200)
Rajagopal, S. et al. Beta-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc. Natl Acad. Sci. USA 107, 628–632 (2010). (PMID: 2001865110.1073/pnas.0912852107)
Miao, Z. et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc. Natl Acad. Sci. USA 104, 15735–15740 (2007). (PMID: 17898181199457910.1073/pnas.0610444104)
Zabel, B. A., Lewen, S., Berahovich, R. D., Jaen, J. C. & Schall, T. J. The novel chemokine receptor CXCR7 regulates trans-endothelial migration of cancer cells. Mol. Cancer 10, 73 (2011). (PMID: 21672222312330910.1186/1476-4598-10-73)
Li, X. et al. Activation of CXCR7 limits atherosclerosis and improves hyperlipidemia by increasing cholesterol uptake in adipose tissue. Circulation 129, 1244–1253 (2014). (PMID: 2437497210.1161/CIRCULATIONAHA.113.006840)
Hao, H. et al. Loss of endothelial CXCR7 impairs vascular homeostasis and cardiac remodeling after myocardial infarction: implications for cardiovascular drug discovery. Circulation 135, 1253–1264 (2017). (PMID: 2815400710.1161/CIRCULATIONAHA.116.023027)
Ziegler, M. et al. Highly sensitive detection of minimal cardiac ischemia using positron emission tomography imaging of activated platelets. Sci. Rep. 6, 38161 (2016). (PMID: 27909290513357910.1038/srep38161)
Gawaz, M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc. Res. 61, 498–511 (2004). (PMID: 1496248010.1016/j.cardiores.2003.11.036)
World Medical Association Declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects. Cardiovasc. Res. 35, 2–3 (1997).
Directive 2001/20/EC of the European Parliament and of the Council of 4 April 2001 on the approximation of the laws, regulations and administrative provisions of the member states relating to the implementation of good clinical practice in the conduct of clinical trials on medicinal products for human use. Med. Etika Bioet. 9, 12–19 (2002).
International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH harmonized tripartite guideline: guideline for good clinical practice. J. Postgrad. Med. 47, 45–50 (2001).
Droppa, M. et al. Periprocedural platelet inhibition with cangrelor in P2Y12-inhibitor naive patients with acute coronary syndromes - a matched-control pharmacodynamic comparison in real-world patients. Int. J. Cardiol. 223, 848–851 (2016). (PMID: 2758021910.1016/j.ijcard.2016.08.270)
Roffi, M. et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur. Heart J. 37, 267–315 (2016). (PMID: 2632011010.1093/eurheartj/ehv320)
Thygesen, K. et al. Fourth Universal Definition of Myocardial Infarction (2018). Circulation 138, e618–e651 (2018). (PMID: 3057151110.1161/CIR.0000000000000617)
Knuuti, J. et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 41, 407–477 (2020). (PMID: 3150443910.1093/eurheartj/ehz425)
Borst, O. et al. The serum- and glucocorticoid-inducible kinase 1 (SGK1) influences platelet calcium signaling and function by regulation of Orai1 expression in megakaryocytes. Blood 119, 251–261 (2012). (PMID: 2203186410.1182/blood-2011-06-359976)
Borchert, N. et al. Proteogenomics of Pristionchus pacificus reveals distinct proteome structure of nematode models. Genome Res. 20, 837–846 (2010). (PMID: 20237107287758010.1101/gr.103119.109)
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007). (PMID: 1770320110.1038/nprot.2007.261)
Schmitt, M. et al. Quantitative proteomics links the intermediate filament nestin to resistance to targeted BRAF inhibition in melanoma cells. Mol. Cell. Proteomics 18, 1096–1109 (2019). (PMID: 30890564655392610.1074/mcp.RA119.001302)
Simeonov, S. & Schaffer, T. E. Ultrafast imaging of cardiomyocyte contractions by combining scanning ion conductance microscopy with a microelectrode array. Anal. Chem. 91, 9648–9655 (2019). (PMID: 3124772510.1021/acs.analchem.9b01092)
Munzer, P. et al. PDK1 determines collagen-dependent platelet Ca2+ signaling and is critical to development of ischemic stroke in vivo. Arterioscler. Thromb. Vasc. Biol. 36, 1507–1516 (2016). (PMID: 2733945810.1161/ATVBAHA.115.307105)
Munzer, P. et al. CK2beta regulates thrombopoiesis and Ca(2+)-triggered platelet activation in arterial thrombosis. Blood 130, 2774–2785 (2017). (PMID: 2892812510.1182/blood-2017-05-784413)
von Ungern-Sternberg, S. N. I. et al. Extracellular cyclophilin a augments platelet-dependent thrombosis and thromboinflammation. Thromb. Haemost. 117, 2063–2078 (2017). (PMID: 10.1160/TH17-01-0067)
Witte, A., Chatterjee, M., Lang, F. & Gawaz, M. Platelets as a novel source of pro-inflammatory chemokine CXCL14. Cell. Physiol. Biochem. 41, 1684–1696 (2017). (PMID: 2835905310.1159/000471821)
Chatterjee, M. et al. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4-CXCR7. Cell Death Dis. 6, e1989 (2015). (PMID: 26583329467091410.1038/cddis.2015.233)
Seizer, P. et al. EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI-EMMPRIN interaction. Thromb. Haemost. 101, 682–686 (2009). (PMID: 1935011110.1160/TH08-06-0368)
Schleicher, R. I. et al. Platelets induce apoptosis via membrane-bound FasL. Blood 126, 1483–1493 (2015). (PMID: 26232171457387110.1182/blood-2013-12-544445)
Borst, O. et al. Methods employed for induction and analysis of experimental myocardial infarction in mice. Cell. Physiol. Biochem. 28, 1–12 (2011). (PMID: 2186584310.1159/000331708)
تواريخ الأحداث: Date Created: 20220406 Date Completed: 20220407 Latest Revision: 20221112
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC8983782
DOI: 10.1038/s41467-022-29341-1
PMID: 35383158
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-022-29341-1