دورية أكاديمية

Experimental Comparison of Fiducial Markers Used in Proton Therapy: Study of Different Imaging Modalities and Proton Fluence Perturbations Measured With CMOS Pixel Sensors.

التفاصيل البيبلوغرافية
العنوان: Experimental Comparison of Fiducial Markers Used in Proton Therapy: Study of Different Imaging Modalities and Proton Fluence Perturbations Measured With CMOS Pixel Sensors.
المؤلفون: Reidel CA; Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany., Horst F; Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany., Schuy C; Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany., Jäkel O; Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany., Ecker S; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany., Henkner K; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany., Brons S; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany., Durante M; Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.; Institut für Physik Kondensierter Materie, Technische Universität Darmstadt, Darmstadt, Germany., Weber U; Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
المصدر: Frontiers in oncology [Front Oncol] 2022 Mar 25; Vol. 12, pp. 830080. Date of Electronic Publication: 2022 Mar 25 (Print Publication: 2022).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation] Country of Publication: Switzerland NLM ID: 101568867 Publication Model: eCollection Cited Medium: Print ISSN: 2234-943X (Print) Linking ISSN: 2234943X NLM ISO Abbreviation: Front Oncol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: [Lausanne : Frontiers Research Foundation]
مستخلص: Fiducial markers are used for image guidance to verify the correct positioning of the target for the case of tumors that can suffer interfractional motion during proton therapy. The markers should be visible on daily imaging, but at the same time, they should produce minimal streak artifacts in the CT scans for treatment planning and induce only slight dose perturbations during particle therapy. In this work, these three criteria were experimentally investigated at the Heidelberg Ion Beam Therapy Center. Several small fiducial markers with different geometries and materials (gold, platinum, and carbon-coated ZrO 2 ) were evaluated. The streak artifacts on treatment planning CT were measured with and without iMAR correction, showing significantly smaller artifacts from markers lighter than 6 mg and a clear improvement with iMAR correction. Daily imaging as X-ray projections and in-room mobile CT were also performed. Markers heavier than 6 mg showed a better contrast in the X-ray projections, whereas on the images from the in-room mobile CT, all markers were clearly visible. In the other part of this work, fluence perturbations of proton beams were measured for the same markers by using a tracker system of several high spatial resolution CMOS pixel sensors. The measurements were performed for single-energy beams, as well as for a spread-out Bragg peak. Three-dimensional fluence distributions were computed after reconstructing all particle trajectories. These measurements clearly showed that the ZrO 2 markers and the low-mass gold/platinum markers (0.35mm diameter) induce perturbations being 2-3 times lower than the heavier gold or platinum markers of 0.5mm diameter. Monte Carlo simulations, using the FLUKA code, were used to compute dose distributions and showed good agreement with the experimental data after adjusting the phase space of the simulated proton beam compared to the experimental beam.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2022 Reidel, Horst, Schuy, Jäkel, Ecker, Henkner, Brons, Durante and Weber.)
References: Pract Radiat Oncol. 2020 Nov - Dec;10(6):434-442. (PMID: 31988039)
Phys Med Biol. 2010 Dec 7;55(23):7135-47. (PMID: 21076190)
J Appl Clin Med Phys. 2009 Jan 27;10(1):2875. (PMID: 19223836)
Z Med Phys. 2021 May;31(2):203-214. (PMID: 32711939)
J Appl Clin Med Phys. 2012 Sep 06;13(5):3976. (PMID: 22955665)
Phys Med Biol. 2011 Aug 21;56(16):5287-302. (PMID: 21799236)
Med Phys. 2012 Sep;39(9):5584-91. (PMID: 22957624)
Phys Med Biol. 2007 Jul 7;52(13):3979-90. (PMID: 17664589)
Radiother Oncol. 2004 Dec;73 Suppl 2:S186-90. (PMID: 15971340)
Phys Med Biol. 2015 Feb 7;60(3):1047-67. (PMID: 25585685)
Int J Radiat Oncol Biol Phys. 1991 Jun;20(6):1317-24. (PMID: 2045306)
Radiother Oncol. 1995 Oct;37(1):35-42. (PMID: 8539455)
Int J Radiat Oncol Biol Phys. 1995 Jan 1;31(1):113-8. (PMID: 7995741)
Gastrointest Endosc. 2019 Apr;89(4):659-670.e18. (PMID: 30445001)
Gastroenterol Hepatol (N Y). 2019 Mar;15(3):167-170. (PMID: 31061660)
Nat Rev Clin Oncol. 2017 Aug;14(8):483-495. (PMID: 28290489)
Phys Med Biol. 2017 Nov 21;62(24):9220-9239. (PMID: 29058685)
Endosc Int Open. 2018 Jun;6(6):E766-E768. (PMID: 29876514)
Phys Med Biol. 2007 Jun 7;52(11):2937-52. (PMID: 17505081)
Acta Oncol. 2010 Oct;49(7):1160-4. (PMID: 20831508)
J Radiat Res. 2013 Jul;54 Suppl 1:i61-8. (PMID: 23824129)
Phys Med Biol. 2020 Apr 17;65(8):085005. (PMID: 32053811)
Nat Methods. 2012 Jul;9(7):671-5. (PMID: 22930834)
Front Oncol. 2016 May 11;6:116. (PMID: 27242956)
فهرسة مساهمة: Keywords: CMOS pixel sensor; Monte Carlo simulation; dose perturbation; fiducial marker; image guidance; proton therapy; streak artifacts
تواريخ الأحداث: Date Created: 20220411 Latest Revision: 20220413
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC8990863
DOI: 10.3389/fonc.2022.830080
PMID: 35402273
قاعدة البيانات: MEDLINE
الوصف
تدمد:2234-943X
DOI:10.3389/fonc.2022.830080