دورية أكاديمية

Nanoscale Patterning of In Vitro Neuronal Circuits.

التفاصيل البيبلوغرافية
العنوان: Nanoscale Patterning of In Vitro Neuronal Circuits.
المؤلفون: Mateus JC; Neuroengineering and Computational Neuroscience Laboratory, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal., Weaver S; Laboratory for Biosensors and Bioelectronics, ETH Zürich, 8092 Zürich, Switzerland., van Swaay D; Wunderlichips GmbH, 8037 Zürich, Switzerland., Renz AF; Laboratory for Biosensors and Bioelectronics, ETH Zürich, 8092 Zürich, Switzerland., Hengsteler J; Laboratory for Biosensors and Bioelectronics, ETH Zürich, 8092 Zürich, Switzerland., Aguiar P; Neuroengineering and Computational Neuroscience Laboratory, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal., Vörös J; Laboratory for Biosensors and Bioelectronics, ETH Zürich, 8092 Zürich, Switzerland.
المصدر: ACS nano [ACS Nano] 2022 Apr 26; Vol. 16 (4), pp. 5731-5742. Date of Electronic Publication: 2022 Apr 11.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101313589 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1936-086X (Electronic) Linking ISSN: 19360851 NLM ISO Abbreviation: ACS Nano Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington D.C. : American Chemical Society
مواضيع طبية MeSH: Neurons* , Synapses*/physiology, Axons ; Neurogenesis
مستخلص: Methods for patterning neurons in vitro have gradually improved and are used to investigate questions that are difficult to address in or ex vivo . Though these techniques guide axons between groups of neurons, multiscale control of neuronal connectivity, from circuits to synapses, is yet to be achieved in vitro. As studying neuronal circuits with synaptic resolution in vivo poses significant challenges, we present an in vitro alternative to validate biophysical and computational models. In this work we use a combination of electron beam lithography and photolithography to create polydimethylsiloxane (PDMS) structures with features ranging from 150 nm to a few millimeters. Leveraging the difference between average axon and dendritic spine diameters, we restrict axon growth while allowing spines to pass through nanochannels to guide synapse formation between small groups of neurons (i.e., nodes). We show this technique can be used to generate large numbers of isolated feed-forward circuits where connections between nodes are restricted to regions connected by nanochannels. Using a genetically encoded calcium indicator in combination with fluorescently tagged postsynaptic protein, PSD-95, we demonstrate functional synapses can form in this region.
فهرسة مساهمة: Keywords: axon guidance; bottom-up neuroscience; brain-on-a-chip; e-beam lithography; mix and match lithography; nanofluidics; synapse
تواريخ الأحداث: Date Created: 20220411 Date Completed: 20221111 Latest Revision: 20221222
رمز التحديث: 20240628
DOI: 10.1021/acsnano.1c10750
PMID: 35404570
قاعدة البيانات: MEDLINE
الوصف
تدمد:1936-086X
DOI:10.1021/acsnano.1c10750