دورية أكاديمية

Multidimensional chromatin profiling of zebrafish pancreas to uncover and investigate disease-relevant enhancers.

التفاصيل البيبلوغرافية
العنوان: Multidimensional chromatin profiling of zebrafish pancreas to uncover and investigate disease-relevant enhancers.
المؤلفون: Bordeira-Carriço R; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, 4200-135, Portugal.; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal., Teixeira J; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, 4200-135, Portugal.; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal.; Doctoral program in Molecular and Cell Biology (MCbiology), ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal., Duque M; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, 4200-135, Portugal.; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal.; Doctoral program in Molecular and Cell Biology (MCbiology), ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal., Galhardo M; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, 4200-135, Portugal.; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal.; Instituto de Ciências, Tecnologias e Agroambiente (CIBIO), Universidade do Porto, 4051-401, Porto, Portugal., Ribeiro D; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, 4200-135, Portugal.; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal., Acemel RD; Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide, Sevilla, 41013, Spain., Firbas PN; Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide, Sevilla, 41013, Spain., Tena JJ; Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide, Sevilla, 41013, Spain., Eufrásio A; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, 4200-135, Portugal.; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal.; Doctoral program in Molecular and Cell Biology (MCbiology), ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal., Marques J; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, 4200-135, Portugal.; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal., Ferreira FJ; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, 4200-135, Portugal.; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal.; Doctoral program in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, 4050-313, Portugal., Freitas T; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, 4200-135, Portugal.; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal., Carneiro F; Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, 4200-319, Portugal.; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, 4200-465, Portugal., Goméz-Skarmeta JL; Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide, Sevilla, 41013, Spain., Bessa J; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, 4200-135, Portugal. jose.bessa@ibmc.up.pt.; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal. jose.bessa@ibmc.up.pt.
المصدر: Nature communications [Nat Commun] 2022 Apr 11; Vol. 13 (1), pp. 1945. Date of Electronic Publication: 2022 Apr 11.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Enhancer Elements, Genetic*/genetics , Zebrafish*/genetics, Animals ; Chromatin/genetics ; Genome-Wide Association Study ; Pancreas
مستخلص: The pancreas is a central organ for human diseases. Most alleles uncovered by genome-wide association studies of pancreatic dysfunction traits overlap with non-coding sequences of DNA. Many contain epigenetic marks of cis-regulatory elements active in pancreatic cells, suggesting that alterations in these sequences contribute to pancreatic diseases. Animal models greatly help to understand the role of non-coding alterations in disease. However, interspecies identification of equivalent cis-regulatory elements faces fundamental challenges, including lack of sequence conservation. Here we combine epigenetic assays with reporter assays in zebrafish and human pancreatic cells to identify interspecies functionally equivalent cis-regulatory elements, regardless of sequence conservation. Among other potential disease-relevant enhancers, we identify a zebrafish ptf1a distal-enhancer whose deletion causes pancreatic agenesis, a phenotype previously found to be induced by mutations in a distal-enhancer of PTF1A in humans, further supporting the causality of this condition in vivo. This approach helps to uncover interspecies functionally equivalent cis-regulatory elements and their potential role in human disease.
(© 2022. The Author(s).)
References: Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018). (PMID: 30262496698680110.1126/science.aau0320)
Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet 46, 136–143 (2014). (PMID: 24413736393545010.1038/ng.2870)
Klein, A. P. et al. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat. Commun. 9, 556 (2018). (PMID: 29422604580568010.1038/s41467-018-02942-5)
Wolpin, B. M. et al. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat. Genet 46, 994–1000 (2014). (PMID: 25086665419166610.1038/ng.3052)
Mahajan, A. et al. Fine-mapping of an expanded set of type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet 50, 1505–1513 (2018). (PMID: 30297969628770610.1038/s41588-018-0241-6)
Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet 44, 981–990 (2012). (PMID: 22885922344224410.1038/ng.2383)
Lippi, G. & Mattiuzzi, C. The global burden of pancreatic cancer. Arch. Med Sci. 16, 820–824 (2020). (PMID: 32542083728631710.5114/aoms.2020.94845)
GBD. Pancreatic Cancer Collaborators. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 4, 934–947 (2019). 2017. (PMID: 10.1016/S2468-1253(19)30347-4)
Huang, J. et al. Worldwide Burden of, Risk Factors for, and Trends in Pancreatic Cancer. Gastroenterology 160, 744–754 (2021). (PMID: 3305886810.1053/j.gastro.2020.10.007)
Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin. Pr. 157, 107843 (2019). (PMID: 10.1016/j.diabres.2019.107843)
Lascar, N. et al. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 6, 69–80 (2018). (PMID: 2884747910.1016/S2213-8587(17)30186-9)
Sinclair, A. et al. Diabetes and global ageing among 65-99-year-old adults: Findings from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin. Pr. 162, 108078 (2020). (PMID: 10.1016/j.diabres.2020.108078)
Parker, S. C. J. et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl Acad. Sci. USA 110, 17921–17926 (2013). (PMID: 24127591381644410.1073/pnas.1317023110)
Khetan, S. et al. Type 2 Diabetes-Associated Genetic Variants Regulate Chromatin Accessibility in Human Islets. Diabetes 67, 2466–2477 (2018). (PMID: 30181159619834910.2337/db18-0393)
Greenwald, W. W. et al. Pancreatic islet chromatin accessibility and conformation reveals distal enhancer networks of type 2 diabetes risk. Nat. Commun. 10, 2078 (2019). (PMID: 31064983650552510.1038/s41467-019-09975-4)
Miguel-Escalada, I. et al. Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nat. Genet 51, 1137–1148 (2019). (PMID: 31253982664004810.1038/s41588-019-0457-0)
Gaulton, K. J. et al. A map of open chromatin in human pancreatic islets. Nat. Genet 42, 255–259 (2010). (PMID: 20118932282850510.1038/ng.530)
Roman, T. S. et al. A Type 2 Diabetes-Associated Functional Regulatory Variant in a Pancreatic Islet Enhancer at the ADCY5 Locus. Diabetes 66, 2521–2530 (2017). (PMID: 28684635586037410.2337/db17-0464)
Kycia, I. et al. A Common Type 2 Diabetes Risk Variant Potentiates Activity of an Evolutionarily Conserved Islet Stretch Enhancer and Increases C2CD4A and C2CD4B Expression. Am. J. Hum. Genet 102, 620–635 (2018). (PMID: 29625024598534210.1016/j.ajhg.2018.02.020)
Eufrásio, A. et al. In Vivo Reporter Assays Uncover Changes in Enhancer Activity Caused by Type 2 Diabetes-Associated Single Nucleotide Polymorphisms. Diabetes 69, 2794–2805 (2020). (PMID: 32912862767977510.2337/db19-1049)
Fujitani, Y. et al. Targeted deletion of a cis-regulatory region reveals differential gene dosage requirements for Pdx1 in foregut organ differentiation and pancreas formation. Genes Dev. 20, 253–266 (2006). (PMID: 16418487135611510.1101/gad.1360106)
van Arensbergen, J. et al. A distal intergenic region controls pancreatic endocrine differentiation by acting as a transcriptional enhancer and as a polycomb response element. PLoS One 12, e0171508 (2017). (PMID: 28225770532143310.1371/journal.pone.0171508)
Akerman, I. et al. Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene. Cell Rep. 35, 108981 (2021). (PMID: 33852861805218610.1016/j.celrep.2021.108981)
Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013). (PMID: 23360964368631310.1038/nbt.2501)
Kinkel, M. D. & Prince, V. E. On the diabetic menu: Zebrafish as a model for pancreas development and function. Bioessays 31, 139–152 (2009). (PMID: 19204986277033010.1002/bies.200800123)
Prince, V. E., Anderson, R. M. & Dalgin, G. Zebrafish Pancreas Development and Regeneration: Fishing for Diabetes Therapies. Curr. Top. Dev. Biol. 124, 235–276 (2017). (PMID: 2833586110.1016/bs.ctdb.2016.10.005)
Elgar, G. & Vavouri, T. Tuning in to the signals: noncoding sequence conservation in vertebrate genomes. Trends Genet 24, 344–352 (2008). (PMID: 1851436110.1016/j.tig.2008.04.005)
Prescott, S. L. et al. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 163, 68–83 (2015). (PMID: 26365491484804310.1016/j.cell.2015.08.036)
Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009). (PMID: 19212405274523410.1038/nature07730)
modENCODE Consortium. et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010). (PMID: 10.1126/science.1198374)
Wittkopp, P. J. & Kalay, G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet 13, 59–69 (2011). (PMID: 2214324010.1038/nrg3095)
Fisher, S., Grice, E. A., Vinton, R. M., Bessling, S. L. & McCallion, A. S. Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science 312, 276–279 (2006). (PMID: 1655680210.1126/science.1124070)
Jones, S. et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum. Mutat. 33, 100–103 (2012). (PMID: 2200994110.1002/humu.21633)
Wu, J. N. & Roberts, C. W. M. ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discov. 3, 35–43 (2013). (PMID: 2320847010.1158/2159-8290.CD-12-0361)
Weedon, M. N. et al. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat. Genet 46, 61–64 (2014). (PMID: 2421288210.1038/ng.2826)
Gabbay, M., Ellard, S., De Franco, E. & Moisés, R. S. Pancreatic Agenesis due to Compound Heterozygosity for a Novel Enhancer and Truncating Mutation in the PTF1A Gene. J. Clin. Res. Pediatr. Endocrinol. 9, 274–277 (2017). (PMID: 28663161559681010.4274/jcrpe.4494)
Evliyaoğlu, O. et al. Neonatal Diabetes: Two Cases with Isolated Pancreas Agenesis due to Homozygous PTF1A Enhancer Mutations and One with Developmental Delay, Epilepsy, and Neonatal Diabetes Syndrome due to KCNJ11 Mutation. J. Clin. Res. Pediatr. Endocrinol. 10, 168–174 (2018). (PMID: 28943513598538710.4274/jcrpe.5162)
Demirbilek, H. et al. Clinical Characteristics and Long-term Follow-up of Patients with Diabetes Due To PTF1A Enhancer Mutations. J. Clin. Endocrinol. Metab. 105, e4351–e4359 (2020). (PMID: 752673110.1210/clinem/dgaa613)
Alvarsson, A. et al. A 3D atlas of the dynamic and regional variation of pancreatic innervation in diabetes. Sci. Adv. 6, eaaz9124 (2020). (PMID: 33036983755700010.1126/sciadv.aaz9124)
Cabrera, O. et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl Acad. Sci. USA. 14, 2334–2339 (2006). (PMID: 10.1073/pnas.0510790103)
Saito, K., Iwama, N. & Takahashi, T. Morphometrical analysis on topographical difference in size distribution, number and volume of islets in the human pancreas. Tohoku J. Exp. Med. 124, 177–186 (1978). (PMID: 34763510.1620/tjem.124.177)
Rahier, J., Wallon, J. & Henquin, J. C. Cell populations in the endocrine pancreas of human neonates and infants. Diabetologia 20, 540–546 (1981). (PMID: 611663810.1007/BF00252762)
Park, J. T. & Leach, S. D. Zebrafish model of KRAS-initiated pancreatic cancer. Anim. Cells Syst. 22, 353–359 (2018). (PMID: 10.1080/19768354.2018.1530301)
Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011). (PMID: 2116047310.1038/nature09692)
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013). (PMID: 24097267395982510.1038/nmeth.2688)
Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007). (PMID: 17632057320029510.1016/j.cell.2007.05.042)
Bogdanovic, O. et al. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res. 22, 2043–2053 (2012). (PMID: 22593555346019810.1101/gr.134833.111)
Hiller, M. et al. Computational methods to detect conserved non-genic elements in phylogenetically isolated genomes: application to zebrafish. Nucleic Acids Res. 41, e151 (2013). (PMID: 23814184375365310.1093/nar/gkt557)
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010). (PMID: 20436461484023410.1038/nbt.1630)
Tarifeño-Saldivia, E. et al. Transcriptome analysis of pancreatic cells across distant species highlights novel important regulator genes. BMC Biol. 15, 21 (2017). (PMID: 28327131536002810.1186/s12915-017-0362-x)
White, R. J. et al. A high-resolution mRNA expression time course of embryonic development in zebrafish. eLife 6, e30860 (2017). (PMID: 29144233569028710.7554/eLife.30860)
Gorkin, D. U. et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744–751 (2020). (PMID: 32728240739861810.1038/s41586-020-2093-3)
Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012). (PMID: 22763441404162210.1038/nature11243)
Nord, A. S. et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155, 1521–1531 (2013). (PMID: 24360275398911110.1016/j.cell.2013.11.033)
Hinrichs, A. S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34, D590–D598 (2006). (PMID: 1638193810.1093/nar/gkj144)
Piñero, J. et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database 2015, bav028 (2015). (PMID: 25877637439799610.1093/database/bav028)
Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013). (PMID: 23582323376096710.1016/j.cell.2013.03.036)
Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013). (PMID: 23582322365312910.1016/j.cell.2013.03.035)
Pérez-Rico, Y. A. et al. Comparative analyses of super-enhancers reveal conserved elements in vertebrate genomes. Genome Res 27, 259–268 (2017). (PMID: 27965291528723110.1101/gr.203679.115)
Shirakawa, J. et al. Insulin Signaling Regulates the FoxM1/PLK1/CENP-A Pathway to Promote Adaptive Pancreatic β Cell Proliferation. Cell Metab. 25, 868–882.e5 (2017). (PMID: 28286049538203910.1016/j.cmet.2017.02.004)
Tiyaboonchai, A. et al. GATA6 Plays an Important Role in the Induction of Human Definitive Endoderm, Development of the Pancreas, and Functionality of Pancreatic β Cells. Stem Cell Rep. 8, 589–604 (2017). (PMID: 10.1016/j.stemcr.2016.12.026)
ENCODE Project Consortium. et al.Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020). (PMID: 10.1038/s41586-020-2493-4)
Jennings, R. E., Scharfmann, R. & Staels, W. Transcription factors that shape the mammalian pancreas. Diabetologia 63, 1974–1980 (2020). (PMID: 32894307747691010.1007/s00125-020-05161-0)
Cebola, I. et al. TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors. Nat. Cell Biol. 17, 615–626 (2015). (PMID: 25915126443458510.1038/ncb3160)
Duque, M., Amorim, J. P. & Bessa, J. Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development. FEBS J. (2021) https://doi.org/10.1111/febs.16075 .
Kimura, Y. et al. ARID1A Maintains Differentiation of Pancreatic Ductal Cells and Inhibits Development of Pancreatic Ductal Adenocarcinoma in Mice. Gastroenterology 155, 194–209.e2 (2018). (PMID: 2960429110.1053/j.gastro.2018.03.039)
Shen, J. et al. ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors. Cancer Discov. 5, 752–767 (2015). (PMID: 26069190449787110.1158/2159-8290.CD-14-0849)
Wang, S. C. et al. SWI/SNF component ARID1A restrains pancreatic neoplasia formation. Gut 68, 1259–1270 (2019). (PMID: 3031509310.1136/gutjnl-2017-315490)
Wang, W. et al. ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas. Gut 68, 1245–1258 (2019). (PMID: 3022821910.1136/gutjnl-2017-315541)
Pashos, E., Park, J. T., Leach, S. & Fisher, S. Distinct enhancers of ptf1a mediate specification and expansion of ventral pancreas in zebrafish. Dev. Biol. 381, 471–481 (2013). (PMID: 23876428536743810.1016/j.ydbio.2013.07.011)
Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D1284 (2018). (PMID: 2916143310.1093/nar/gkx1188)
Khoueiry, P. et al. Uncoupling evolutionary changes in DNA sequence, transcription factor occupancy and enhancer activity. eLife 6, e28440 (2017). (PMID: 28792889555027610.7554/eLife.28440)
Yang, S. et al. Functionally conserved enhancers with divergent sequences in distant vertebrates. BMC Genomics 16, 882 (2015). (PMID: 26519295462825110.1186/s12864-015-2070-7)
Wong, E. S. et al. Deep conservation of the enhancer regulatory code in animals. Science 370, eaax8137 (2020). (PMID: 3315411110.1126/science.aax8137)
Snetkova, V. et al. Ultraconserved enhancer function does not require perfect sequence conservation. Nat. Genet. 53, 521–528 (2021). (PMID: 33782603803897210.1038/s41588-021-00812-3)
Deplancke, B., Alpern, D. & Gardeux, V. The Genetics of Transcription Factor DNA Binding Variation. Cell 166, 538–554 (2016). (PMID: 2747196410.1016/j.cell.2016.07.012)
Arnosti, D. N. & Kulkarni, M. M. Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards? J. Cell Biochem. 94, 890–898 (2005). (PMID: 1569654110.1002/jcb.20352)
Buffry, A. D., Mendes, C. C. & McGregor, A. P. The Functionality and Evolution of Eukaryotic Transcriptional Enhancers. Adv. Genet 96, 143–206 (2016). (PMID: 2796873010.1016/bs.adgen.2016.08.004)
Eichenlaub, M. P. & Ettwiller, L. De novo genesis of enhancers in vertebrates. PLoS Biol. 9, e1001188 (2011). (PMID: 22069375320601410.1371/journal.pbio.1001188)
Jin, K. & Xiang, M. Transcription factor Ptf1a in development, diseases and reprogramming. Cell Mol. Life Sci. 76, 921–940 (2019). (PMID: 3047085210.1007/s00018-018-2972-z)
Kvon, E. Z., Waymack, R., Gad, M. & Wunderlich, Z. Enhancer redundancy in development and disease. Nat. Rev. Genet 22, 324–336 (2021). (PMID: 33442000806858610.1038/s41576-020-00311-x)
Ariza-Cosano, A. et al. Differences in enhancer activity in mouse and zebrafish reporter assays are often associated with changes in gene expression. BMC Genomics 13, 713 (2012). (PMID: 23253453354135810.1186/1471-2164-13-713)
Vierstra, J. et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346, 1007–1012 (2014). (PMID: 25411453433778610.1126/science.1246426)
Cooper, G. M. & Brown, C. D. Qualifying the relationship between sequence conservation and molecular function. Genome Res. 18, 201–205 (2008). (PMID: 1824545310.1101/gr.7205808)
Pennacchio, L. A. & Visel, A. Limits of sequence and functional conservation. Nat. Genet 42, 557–558 (2010). (PMID: 20581875314303610.1038/ng0710-557)
Westerfield, M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). (Univ. of Oregon Press, 2000).
Ishibashi, M., Mechaly, A. S., Becker, T. S. & Rinkwitz, S. Using zebrafish transgenesis to test human genomic sequences for specific enhancer activity. Methods 62, 216–225 (2013). (PMID: 2354255110.1016/j.ymeth.2013.03.018)
Fernández-Miñán, A., Bessa, J., Tena, J. J. & Gómez-Skarmeta, J. L. Assay for transposase-accessible chromatin and circularized chromosome conformation capture, two methods to explore the regulatory landscapes of genes in zebrafish. Methods Cell Biol. 135, 413–430 (2016). (PMID: 2744393810.1016/bs.mcb.2016.02.008)
Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016). (PMID: 27643841550117310.1038/nmeth.3999)
de la Calle-Mustienes, E. et al. A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res. 15, 1061–1072 (2005). (PMID: 16024824118221810.1101/gr.4004805)
Bessa, J. et al. Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev. Dyn. 238, 2409–2417 (2009). (PMID: 1965332810.1002/dvdy.22051)
Bessa, J. et al. A mobile insulator system to detect and disrupt cis-regulatory landscapes in vertebrates. Genome Res. 24, 487–495 (2014). (PMID: 24277716394111310.1101/gr.165654.113)
Kawakami, K. et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell 7, 133–144 (2004). (PMID: 1523996110.1016/j.devcel.2004.06.005)
Vaz, S. et al. FOXM1 repression increases mitotic death upon antimitotic chemotherapy through BMF upregulation. Cell Death Dis. 12, 1–14 (2021). (PMID: 10.1038/s41419-021-03822-5)
Moreno-Mateos, M. A. et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 12, 982–988 (2015). (PMID: 26322839458949510.1038/nmeth.3543)
Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data, http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). (PMID: 22388286332238110.1038/nmeth.1923)
Jiang, H., Lei, R., Ding, S.-W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinforma. 15, 182 (2014). (PMID: 10.1186/1471-2105-15-182)
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (PMID: 20110278283282410.1093/bioinformatics/btq033)
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). (PMID: 18798982259271510.1186/gb-2008-9-9-r137)
Bailey, T. et al. Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol. 9, e1003326 (2013). (PMID: 24244136382814410.1371/journal.pcbi.1003326)
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: Identification of Problematic Regions of the Genome. Sci. Rep. 9, 9354 (2019). (PMID: 31249361659758210.1038/s41598-019-45839-z)
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010). (PMID: 20513432289852610.1016/j.molcel.2010.05.004)
Ye, T. et al. seqMINER: an integrated ChIP-seq data interpretation platform. Nucleic Acids Res. 39, e35 (2011). (PMID: 2117764510.1093/nar/gkq1287)
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 19505943272300210.1093/bioinformatics/btp352)
Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011). (PMID: 10.1214/11-AOAS466)
Klein, F. A. et al. FourCSeq: analysis of 4C sequencing data. Bioinformatics 31, 3085–3091 (2015). (PMID: 26034064457669510.1093/bioinformatics/btv335)
Noordermeer, D. et al. The dynamic architecture of Hox gene clusters. Science 334, 222–225 (2011). (PMID: 2199838710.1126/science.1207194)
Splinter, E., de Wit, E., van de Werken, H. J. G., Klous, P. & de Laat, W. Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation. Methods 58, 221–230 (2012). (PMID: 2260956810.1016/j.ymeth.2012.04.009)
Emera, D., Yin, J., Reilly, S. K., Gockley, J. & Noonan, J. P. Origin and evolution of developmental enhancers in the mammalian neocortex. Proc. Natl Acad. Sci. USA 113, E2617–E2626 (2016). (PMID: 27114548486843110.1073/pnas.1603718113)
Serra, F. et al. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. PLoS Comput Biol. 13, e1005665 (2017). (PMID: 28723903554059810.1371/journal.pcbi.1005665)
Marco-Sola, S., Sammeth, M., Guigó, R. & Ribeca, P. The GEM mapper: fast, accurate and versatile alignment by filtration. Nat. Methods 9, 1185–1188 (2012). (PMID: 2310388010.1038/nmeth.2221)
Gordon A., Hannon G. Fastx-toolkit. FASTQ/A short-reads preprocessing tools, http://hannonlab.cshl.edu/fastx_toolkit/ (2010).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 19451168270523410.1093/bioinformatics/btp324)
Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015). (PMID: 2526070010.1093/bioinformatics/btu638)
Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005). (PMID: 16024819118221610.1101/gr.3715005)
MacDonald, P. W., Liang, K. & Janssen, A. Dynamic adaptive procedures that control the false discovery rate. Electron. J. Stat. 13, 3009–3024 (2019). (PMID: 10.1214/19-EJS1589)
Bordeira-Carriço, R., et al. Github/Zenodo, ed 10.5281/zenodo.6340878 https://doi.org/10.5281/zenodo.6340878 (2022).
المشرفين على المادة: 0 (Chromatin)
تواريخ الأحداث: Date Created: 20220412 Date Completed: 20220413 Latest Revision: 20221113
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9001708
DOI: 10.1038/s41467-022-29551-7
PMID: 35410466
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-022-29551-7