دورية أكاديمية

Effects of Ethanolic Extract of Cynara cardunculus (Artichoke) Leaves on Neuroinflammatory and Neurochemical Parameters in a Diet-Induced Mice Obesity Model.

التفاصيل البيبلوغرافية
العنوان: Effects of Ethanolic Extract of Cynara cardunculus (Artichoke) Leaves on Neuroinflammatory and Neurochemical Parameters in a Diet-Induced Mice Obesity Model.
المؤلفون: Piccinini A; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Oliveira MP; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Silva MR; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Bett GS; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Becker IB; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Mendes TF; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Salla DH; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Silva LE; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Vilela TC; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Moraes FM; Pharmaceutical Technology Group, Postgraduate Program in Environmental Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Moterle D; Pharmaceutical Technology Group, Postgraduate Program in Environmental Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Damiani AP; Laboratory of Biomedicine Translational, Postgraduate Program in Health Sciences, University of Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil., Dagostin LS; Laboratory of Biomedicine Translational, Postgraduate Program in Health Sciences, University of Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil., Tietbohl LT; Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil., Bittencourt JVS; Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil., Biehl E; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Denicol TL; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Bonfante SR; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Andrade VM; Laboratory of Biomedicine Translational, Postgraduate Program in Health Sciences, University of Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil., Silveira PCL; Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil., Prophiro JS; Immunoparasitology Research Group, Postgraduate Program in Health Sciences and Postgraduate Program in Environmental Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Ferreira GK; Educacional Society of de Santa Catarina, Joinville, Santa Catarina, Brazil., Petronilho F; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Kanis LA; Pharmaceutical Technology Group, Postgraduate Program in Environmental Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil., Rezin GT; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil. gitezza@hotmail.com.
المصدر: Neurochemical research [Neurochem Res] 2022 Jul; Vol. 47 (7), pp. 1888-1903. Date of Electronic Publication: 2022 Apr 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 7613461 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6903 (Electronic) Linking ISSN: 03643190 NLM ISO Abbreviation: Neurochem Res Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
Original Publication: New York, Plenum Press
مواضيع طبية MeSH: Cynara*/chemistry , Cynara scolymus*/chemistry, Animals ; Antioxidants/pharmacology ; Diet, High-Fat/adverse effects ; Disease Models, Animal ; Ethanol/adverse effects ; Male ; Mice ; Obesity/drug therapy ; Plant Extracts/pharmacology ; Plant Extracts/therapeutic use ; Plant Leaves/chemistry
مستخلص: This study aimed to evaluate the effect of Cynara cardunculus leaf ethanol extract on inflammatory and oxidative stress parameters in the hypothalamus, prefrontal cortex, hippocampus, striatum, cerebral cortex and liver of high-fat diet-induced obese mice. Food intake, body weight, visceral fat weight, and liver weight were also evaluated. Male Swiss mice were divided into control (low-fat purified diet) and obese (high-fat purified diet) groups. After 6 weeks, mice were divided into control + saline, control + C. cardunculus leaf ethanol extract, obese + saline, obese + C. cardunculus leaf ethanol extract. Cynara cardunculus leaf ethanol extract (1600 mg/kg/day) or saline was administered orally for 4 weeks. Brain structures (hypothalamus, hippocampus, prefrontal cortex, striatum and cerebral cortex) and liver were removed. Treatment with C. cardunculus leaf ethanol extract did not affect body weight but did reduce visceral fat. Obesity can cause inflammation and oxidative stress and increase the activity of antioxidant enzymes in brain structures. Treatment with ethanolic extract of C. cardunculus leaves partially reversed the changes in inflammatory damage parameters and oxidative damage parameters and attenuated changes in the antioxidant defense. The C. cardunculus leaf ethanol extract benefited from the brains of obese animals by partially reversing the changes caused by the consumption of a high-fat diet and the consequent obesity. These results corroborate those of studies indicating that the C. cardunculus leaf ethanol extract can contribute to the treatment of obesity.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Word Health Organization (2021) Obesity and overweight. http://www.who.int/news-room/fact-sheets/detail/obesity-and-overwight . Accessed 23 Nov 2021.
ABESO. Brazilian Association of Studies on Obesity and Metabolic Syndrome (2021) Obesity map. https://abeso.org.br/obesidade-e-sindrome-metabolica/mapa-da-obesidade/ Accessed 23 Nov 2021.
Iyer A, Fairlie DP, Prins JB, Hammock BD, Brown L (2010) Inflammatory lipid mediators in adipocyte function and obesity. Nat Rev Endocrinol 2:71–82. https://doi.org/10.1038/nrendo.2009.264. (PMID: 10.1038/nrendo.2009.264)
Wood IS, De Heredia FP, Wang B, Trayhurn P (2009) Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc 4:370–377. https://doi.org/10.1017/s0029665109990206. (PMID: 10.1017/s0029665109990206)
Badimon L, Cubedo J (2017) Adipose tissue depots and inflammation: effects on plasticity and resident mesenchymal stem cell function. Cardiovasc Res 9:1064–1073. https://doi.org/10.1093/cvr/cvx096. (PMID: 10.1093/cvr/cvx096)
Rahman SO, Panda BP, Parvez S, Kaundal M, Hussain S, Akhtar M, Ak N (2019) Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed Pharmacother 110:47–58. https://doi.org/10.1016/j.biopha.2018.11.043. (PMID: 10.1016/j.biopha.2018.11.04330463045)
Rizi EP, Loh TP, Baig S, Chhay V, Huang S, Quek JC, Tai ES, Toh SA, Khoo CM (2018) A high carbohydrate, but not fat or protein meal attenuates postprandial ghrelin, PYY and GLP-1 responses in Chinese men. PLoS ONE 1:e0191609. https://doi.org/10.1371/journal.pone.0191609. (PMID: 10.1371/journal.pone.0191609)
Guillemot-Legris O, Muccioli GG (2017) Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci 40:237–253. https://doi.org/10.1016/j.tins.2017.02.005. (PMID: 10.1016/j.tins.2017.02.00528318543)
Caimari A, Oliver P, Rodenburg W, Keijer J, Palou A (2010) Feeding conditions control the expression of genes involved in sterol metabolism in peripheral blood mononuclear cells of normoweight and diet-induced (cafeteria) obese rats. J Nutr Biochem 21:1127–1133. https://doi.org/10.1016/j.jnutbio.2009.10.001. (PMID: 10.1016/j.jnutbio.2009.10.00120172705)
Bruce-Keller AJ, Keller JN, Morrison CD (2009) Obesity and vulnerability of the CNS. Biochim Biophys Acta 1792:395–400. https://doi.org/10.1016/j.bbadis.2008.10.004. (PMID: 10.1016/j.bbadis.2008.10.00418992327)
Sethi JK, Vidal-Puig AJ (2007) Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res 48:1253–1262. https://doi.org/10.1194/jlr.R700005-JLR200. (PMID: 10.1194/jlr.R700005-JLR20017374880)
Landeiro FM, Quarantini LC (2012) Obesidade: Controle Neural e Hormonal do Comportamento Alimentar. Rev Ciênc Méd Biol 10:236–245.
Gómez-Apo E, Mondragón-Maya A, Ferrari-Díaz M, Silva-Pereyra J (2021) Structural brain changes associated with overweight and obesity. J Obes 2021:6613385. https://doi.org/10.1155/2021/6613385. (PMID: 10.1155/2021/6613385343270178302366)
Cai D, Liu T (2012) Inflammatory cause of metabolic syndrome via brain stress and NF-kB. Aging 4:98–115. https://doi.org/10.18632/aging.100431. (PMID: 10.18632/aging.100431223286003314172)
Van De Sande-Lee S, Pereira FRS, Cintra DE, Fernandes PT, Cardoso AR, Garlipp CR, Chaim EA, Pareja JC, Geloneze B, Li LM, Cendes F, Velloso LA (2011) Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes 60:1699–1704. https://doi.org/10.2337/db10-1614. (PMID: 10.2337/db10-1614215158523114393)
Haslam DW, James WP (2005) Obesity. Lancet 366:1197–1209. https://doi.org/10.1016/S0140-6736(05)67483-1. (PMID: 10.1016/S0140-6736(05)67483-116198769)
Janssen I, Katzmarzyk PT, Ross R (2004) Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr 79:379–384. https://doi.org/10.1093/ajcn/79.3.379. (PMID: 10.1093/ajcn/79.3.37914985210)
Castro AI, Gomez-Arbelaez D, Crujeiras AB, Granero R, Aguera Z, Jimenez-Murcia S, Sajoux I, Lopez-Jaramillo P, Fernandez-Aranda F, Casanueva FF (2018) Effect of a very low-calorie ketogenic diet on food and alcohol cravings, physical and sexual activity, sleep disturbances, and quality of life in obese patients. Nutrients 10:1348. https://doi.org/10.3390/nu10101348. (PMID: 10.3390/nu101013486213862)
Moreno B, Ab C, Bellido D, Sajoux I, Casanueva FF (2016) Obesity treatment by very low-calorie-ketogenic diet at two years: reduction in visceral fat and on the burden of disease. Endocrine 3:681–690. https://doi.org/10.1007/s12020-016-1050-2. (PMID: 10.1007/s12020-016-1050-2)
Zhu X, Zhang HE, Lor R (2004) Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities. J Agric Food Chem 24:7272–7278. https://doi.org/10.1021/jf0490192. (PMID: 10.1021/jf0490192)
Gebhardt R (1997) Antioxidative and protective properties of extracts from leaves of the artichoke (Cynara scolymus L.) against hydroperoxide-induced oxidative stress in cultured rat hepatocytes. Toxicol Appl Pharmacol 2:279–286. https://doi.org/10.1006/taap.1997.8130. (PMID: 10.1006/taap.1997.8130)
Yadav UC, Romana KV, Srivastava SK (2011) Aldose reductase inhibition suppresses airway inflammation. Chem Biol Interact 191:339–345. https://doi.org/10.1016/j.cbi.2011.02.014. (PMID: 10.1016/j.cbi.2011.02.014213343163103624)
Kumar A, Lingadurai S, Jain A, Barman NR (2010) Erythrina variegata Linn: A review on morphology, phytochemistry, and pharmacological aspects. Pharmacogn Rev 8:147–152. https://doi.org/10.4103/0973-7847.70908. (PMID: 10.4103/0973-7847.70908)
Tang X, Wei R, Deng A, Lei T (2017) Protective effects of ethanolic extracts from artichoke, an edible herbal medicine, against acute alcohol-induced liver injury in mice. Nutrients 9:1000. https://doi.org/10.3390/nu9091000. (PMID: 10.3390/nu90910005622760)
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 1:131–138. https://doi.org/10.1016/0003-2697(82)90118-x. (PMID: 10.1016/0003-2697(82)90118-x)
Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616. https://doi.org/10.1016/s0891-5849(99)00107-0. (PMID: 10.1016/s0891-5849(99)00107-010490282)
Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431. https://doi.org/10.1016/0076-6879(90)86135-i. (PMID: 10.1016/0076-6879(90)86135-i2233309)
Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. https://doi.org/10.1016/0076-6879(90)86141-h. (PMID: 10.1016/0076-6879(90)86141-h1978225)
Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145. https://doi.org/10.1016/s0304-3940(01)01636-6. (PMID: 10.1016/s0304-3940(01)01636-611290407)
Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312. https://doi.org/10.1002/9780470110539.ch5. (PMID: 10.1002/9780470110539.ch53033431)
Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 1:214–226. https://doi.org/10.1016/0003-2697(76)90326-2. (PMID: 10.1016/0003-2697(76)90326-2)
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3. (PMID: 10.1016/s0076-6879(84)05016-36727660)
Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1:184–191. https://doi.org/10.1016/0014-4827(88)90265-0. (PMID: 10.1016/0014-4827(88)90265-0)
Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 2:309–316. https://doi.org/10.1006/abbi.1996.0178. (PMID: 10.1006/abbi.1996.0178)
Fischer JC, Ruitenbeek W, Stadhouders AM, Trijbels JM, Sengers RC, Janssen AJ, Veerkamp JH (1985) Investigation of mitochondrial metabolism in small human skeletal muscle biopsy specimens. Improvement of preparation procedure. Clin Chim Acta 1:89–99. https://doi.org/10.1016/0009-8981(85)90022-1. (PMID: 10.1016/0009-8981(85)90022-1)
Lowry OH, Rosebrough NJ, Al F, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 1:265–275. (PMID: 10.1016/S0021-9258(19)52451-6)
Guo YJ, Luo T, Wu F, Mei YW, Peng J, Liu H, Li HR, Zhang SL, Dong JH, Fang Y, Zhao L (2015) Involvement of TLR2 and TLR9 in the anti-inflammatory effects of chlorogenic acid in HSV-1-infected microglia. Life Sci 127:12–18. https://doi.org/10.1016/j.lfs.2015.01.036. (PMID: 10.1016/j.lfs.2015.01.03625744394)
Gul Z, Demircan C, Bagdas D, Buyukuysal RL (2016) Protective effects of chlorogenic acid and its metabolites on hydrogen peroxide-induced alterations in rat brain slices: a comparative study with resveratrol. Neurochem Res 8:2075–2085. https://doi.org/10.1007/s11064-016-1919-8. (PMID: 10.1007/s11064-016-1919-8)
Wang M, Simon JE, Aviles IF, He K, Zheng QY, Tadmor Y (2003) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agric Food Chem 3:601–608. https://doi.org/10.1021/jf020792b. (PMID: 10.1021/jf020792b)
Gebhardt R (1998) Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J Pharmacol Exp Ther 3:1122–1128.
Oppedisano F, Muscoli C, Musolino V, Carresi C, Macrì R, Giancotta C, Bosco F, Maiuolo J, Scarano F, Paone S, Nucera S, Zito MC, Scicchitano M, Ruga S, Ragusa M, Palma E, Tavernese A, Mollace R, Bombardelli E, Mollace V (2020) The protective effect of Cynara cardunculus extract in diet-induced NAFLD: involvement of OCTN1 and OCTN2 transporter subfamily. Nutrients 5:1435. https://doi.org/10.3390/nu12051435. (PMID: 10.3390/nu12051435)
Chusyd DE, Wang D, Huffman DM, Nagy TR (2016) Relationships between rodent white adipose fat pads and human white adipose fat depots. Front Nutr 3:10. https://doi.org/10.3389/fnut.2016.00010. (PMID: 10.3389/fnut.2016.00010271485354835715)
Ishimoto T, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, Orlicky DJ, Cicerchi C, McMahan RH, Abdelmalek MF, Rosen HR, Jackman MR, MacLean PS, Diggle CP, Asipu A, Inaba S, Kosugi T, Sato W, Maruyama S, Sánchez-Lozada LG, Sautin YY, Hill JO, Bonthron DT, Johnson RJ (2013) High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology 5:1632–1643. https://doi.org/10.1002/hep.26594. (PMID: 10.1002/hep.26594)
Panahi Y, Kianpour P, Mohtashami R, Atkin SL, Butler AE, Jafari R, Badeli R, Sahebkar A (2018) Efficacy of artichoke leaf extract in non-alcoholic fatty liver disease: a pilot double-blind randomized controlled trial. Phytother Res 7:1382–1387. https://doi.org/10.1002/ptr.6073. (PMID: 10.1002/ptr.6073)
Vitkovic L, Maeda S, Sternberg E (2001) Anti-inflammatory cytokines: expression and action in the brain. NeuroImmunoModulation 9:295–312. https://doi.org/10.1159/000059387. (PMID: 10.1159/00005938712045357)
Santos HO, Bueno AA, Mota JF (2018) The effect of artichoke on lipid profile: a review of possible mechanisms of action. Pharmacol Res 138:170–178. https://doi.org/10.1016/j.phrs.2018.10.007. (PMID: 10.1016/j.phrs.2018.10.007)
Basu Mallik S, Mudgal J, Nampoothiri M, Hall S, Dukie SA, Grant G, Rao CM, Arora D (2016) Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice. Neurosci Lett 632:218–223. https://doi.org/10.1016/j.neulet.2016.08.044. (PMID: 10.1016/j.neulet.2016.08.04427597761)
de Mello AH, Schraiber RB, Goldim M, Garcez ML, Gomes ML, de Bem SG, Zaccaron RP, Schuck PF, Budni J, Silveira P, Petronilho F, Rezin GT (2019) Omega-3 fatty acids attenuate brain alterations in high-fat diet-induced obesity model. Mol Neurobiol 56:513–524. https://doi.org/10.1007/s12035-018-1097-6. (PMID: 10.1007/s12035-018-1097-629728888)
Klöting N, Blüher M (2014) Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord 4:277–287. https://doi.org/10.1007/s11154-014-9301-0. (PMID: 10.1007/s11154-014-9301-0)
Le Thuc O, Stobbe K, Cansell C, Nahon JL, Blondeau N, Rovère C (2017) Hypothalamic inflammation and energy balance disruptions: spotlight on chemokines. Front Endocrinol (Lausanne) 8:197. https://doi.org/10.3389/fendo.2017.00197. (PMID: 10.3389/fendo.2017.00197)
Ribeiro G, Santos O (2013) Food reward: mechanisms involved and implications for obesity. RPEDM 8:82–88. https://doi.org/10.1016/j.rpedm.2013.09.001. (PMID: 10.1016/j.rpedm.2013.09.001)
de Bona RS, de Mello AH, Garcez ML, de Bem GS, Zacaron RP, de Souza MPG, Budni J, Silveira PCL, Petronilho F, Ferreira GK, Rezin GT (2019) Diet-induced obesity causes hypothalamic neurochemistry alterations in Swiss mice. Metab Brain Dis 2:565–573. https://doi.org/10.1007/s11011-018-0337-9. (PMID: 10.1007/s11011-018-0337-9)
Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, Tsukumo DM, Anhe G, Amaral ME, Takahashi HK, Curi R, Oliveira HC, Carvalheira JB, Bordin S, Saad MJ, Velloso LA (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 2:359–370. https://doi.org/10.1523/JNEUROSCI.2760-08. (PMID: 10.1523/JNEUROSCI.2760-08)
de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, Uleryk E, Budylowski P, Schünemann H, Beyene J, Anand SS (2015) Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 351:h3978. https://doi.org/10.1136/bmj.h3978. (PMID: 10.1136/bmj.h3978262686924532752)
Zapolska-Downar D, Zapolski-Downar A, Naruszewicz M, Siennicka A, Krasnodebska B, Kołdziej B (2002) Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes. Life Sci 71:2897–2908. https://doi.org/10.1016/s0024-3205(02)02136-7. (PMID: 10.1016/s0024-3205(02)02136-712377270)
Juzyszyn Z, Czerny B, Myśliwiec Z, Pawlik A, Droździk M (2010) The effect of artichoke (Cynara scolymus L.) extract on respiratory chain system activity in rat liver mitochondria. Phytother Res 2:S123-128. https://doi.org/10.1002/ptr.2995. (PMID: 10.1002/ptr.2995)
Perez-Garcia F, Adzet T, Canigueral S (2000) Activity of artichoke leaf extract on reactive oxygen species in human leukocytes. Free Radic Res 33:661–665. https://doi.org/10.1080/10715760000301171. (PMID: 10.1080/1071576000030117111200096)
Jimenez-Escrig A, Dragsted LO, Daneshvar B, Pulido R, Saura-Calixto F (2003) In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats. J Agric Food Chem 51:5540–5545. https://doi.org/10.1021/jf030047e. (PMID: 10.1021/jf030047e12926911)
Magielse J, Verlaet A, Breynaert A, Keenoy BM, Apers S, Pieters L, Hermans N (2014) Investigation of the in vivo antioxidative activity of Cynara scolymus (artichoke) leaf extract in the streptozotocin-induced diabetic rat. Mol Nutr Food Res 58:211–215. https://doi.org/10.1002/mnfr.201300282. (PMID: 10.1002/mnfr.20130028224254201)
Maiuolo J, Bava I, Carresi C, Gliozzi M, Musolino V, Scarano F, Nucera S, Scicchitano M, Bosco F, Ruga S, Zito MC, Oppedisano F, Macri R, Tavernese A, Mollace R, Mollace V (2021) The effects of bergamot polyphenolic fraction, Cynara cardunculus, and Olea europea L. extract on doxorubicin-induced cardiotoxicity. Nutrients 13:2158. https://doi.org/10.3390/nu13072158. (PMID: 10.3390/nu13072158342019048308299)
Wang JM, Chen RX, Zhang LL, Ding NN, Liu C, Cui Y, Cheng YX (2018) In vivo protective effects of chlorogenic acid against triptolide-induced hepatotoxicity and its mechanism. Pharm Biol 56:626–631. https://doi.org/10.1080/13880209.2018.1527370. (PMID: 10.1080/13880209.2018.1527370310705336300082)
Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel- Soto J, Morales-González A, Esquivel-Chirino C, Durante-Montiel I, Sánchez-Rivera G (2011) Inflammation, oxidative stress, and obesity. Int J Mol Sci 5:3117–3132. https://doi.org/10.3390/ijms12053117. (PMID: 10.3390/ijms12053117)
Alzoubi KH, Hasan ZA, Khabour OF, Mayyas FA, Al Yacoub ON, Banihani SA, Azab MA, Alrabadi N (2018) The effect of high-fat diet on seizure threshold in rats: role of oxidative stress. Physiol Behav 196:1–7. https://doi.org/10.1016/j.physbeh.2018.08.011. (PMID: 10.1016/j.physbeh.2018.08.01130149086)
FangFang HL, Tingting Q, Min L, Shiping M (2017) Thymol improves high-fat diet-induced cognitive deficits in mice via ameliorating brain insulin resistance and upregulating NRF2/HO-1 pathway. Metab Brain Dis 2:385–393. https://doi.org/10.1007/s11011-016-9921-z. (PMID: 10.1007/s11011-016-9921-z)
Pigott BM, Garthwaite J (2016) Nitric oxide is required for L-type Ca2+ channel-dependent long-term potentiation in the hippocampus. Front Synaptic Neurosci 8:17. https://doi.org/10.3389/fnsyn.2016.00017. (PMID: 10.3389/fnsyn.2016.00017274457864925670)
Włodarczyk M, Jabłonowska-Lietz B, Olejarz W, Nowicka G (2018) Anthropometric and dietary factors as predictors of DNA damage in obese women. Nutrients 5:578. https://doi.org/10.3390/nu10050578. (PMID: 10.3390/nu10050578)
Lattanzio V, Kroon PA, Linsalatac V, Cardinalic A (2009) Globe artichoke: a functional food and source of nutraceutical ingredients. J Funct Foods 1:131–144. https://doi.org/10.1016/j.jff.2009.01.002. (PMID: 10.1016/j.jff.2009.01.002)
Włodarczyk M, Nowicka G (2019) Obesity, DNA damage, and development of obesity-related diseases. Int J Mol Sci 5:1146. https://doi.org/10.3390/ijms20051146. (PMID: 10.3390/ijms20051146)
D’Antuono I, Carola A, Sena LM, Linsalata V, Cardinali A, Logrieco AF, Colucci MG, Apone F (2018) Artichoke polyphenols produce skin anti-age effects by improving endothelial cell integrity and functionality. Molecules (Basel, Switzerland) 11:2729. https://doi.org/10.3390/molecules23112729. (PMID: 10.3390/molecules23112729)
Bogavac-Stanojevic N, Stevuljevic KJ, Cerne D, Zupan J, Marc J, Vujic Z, Crevar-Sakac M, Sopic M, Munjas J, Radenkovic M, Jelic-Ivanovic Z (2018) The role of artichoke leaf tincture (Cynara scolymus) in the suppression of DNA damage and atherosclerosis in rats fed an atherogenic diet. Pharm Biol 1:138–144. https://doi.org/10.1080/13880209.2018.1434549. (PMID: 10.1080/13880209.2018.1434549)
Fetrow CW, Avila JR (2000) Manual de medicina alternativa, 1a edn. Guanabara, Rio de Janeiro, p 743.
Lam KS (2007) New aspects of natural products in drug discovery. Trends Microbiol 6:279–289. https://doi.org/10.1016/j.tim.2007.04.001. (PMID: 10.1016/j.tim.2007.04.001)
Kraft K (1997) Artichoke leaf extract—recent findings reflecting effects on lipid metabolism, liver and gastrointestinal tracts. Phytomedicine 4:369–378. https://doi.org/10.1016/S0944-7113(97)80049-9. (PMID: 10.1016/S0944-7113(97)80049-923195590)
Kwon EY, Kim SY, Choi MS (2018) Luteolin-enriched artichoke leaf extract alleviates the metabolic syndrome in mice with high-fat diet-induced obesity. Nutrients 8:979. https://doi.org/10.3390/nu10080979. (PMID: 10.3390/nu10080979)
Kuan-Hui EC, Nancy ML, Meera GN, Djurdjica C (2021) Visceral adipose tissue imparts peripheral macrophage influx into the hypothalamus. J Neuroinflamm 18:140. https://doi.org/10.1186/s12974-021-02183-2. (PMID: 10.1186/s12974-021-02183-2)
فهرسة مساهمة: Keywords: Cynara cardunculus; Inflammation; Obesity; Oxidative stress
المشرفين على المادة: 0 (Antioxidants)
0 (Plant Extracts)
3K9958V90M (Ethanol)
تواريخ الأحداث: Date Created: 20220415 Date Completed: 20220624 Latest Revision: 20220624
رمز التحديث: 20240628
DOI: 10.1007/s11064-022-03572-6
PMID: 35426598
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-6903
DOI:10.1007/s11064-022-03572-6