دورية أكاديمية

Effects of epistasis and recombination between vaccine-escape and virulence alleles on the dynamics of pathogen adaptation.

التفاصيل البيبلوغرافية
العنوان: Effects of epistasis and recombination between vaccine-escape and virulence alleles on the dynamics of pathogen adaptation.
المؤلفون: McLeod DV; CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France. david.mcleod@iee.unibe.ch.; Institute of Ecology and Evolution, Universität Bern, Bern, Switzerland. david.mcleod@iee.unibe.ch.; Swiss Institute of Bioinformatics, Lausanne, Switzerland. david.mcleod@iee.unibe.ch., Gandon S; CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France. sylvain.gandon@cefe.cnrs.fr.
المصدر: Nature ecology & evolution [Nat Ecol Evol] 2022 Jun; Vol. 6 (6), pp. 786-793. Date of Electronic Publication: 2022 Apr 18.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: England NLM ID: 101698577 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2397-334X (Electronic) Linking ISSN: 2397334X NLM ISO Abbreviation: Nat Ecol Evol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Springer Nature
مواضيع طبية MeSH: Epistasis, Genetic* , Vaccines*, Alleles ; Recombination, Genetic ; Virulence/genetics
مستخلص: Pathogen adaptation to public health interventions such as vaccination may take tortuous routes and involve multiple mutations at different locations in the pathogen genome, acting on distinct phenotypic traits. Yet how these multi-locus adaptations jointly evolve is poorly understood. Here we consider the joint evolution of two adaptations: pathogen escape from the vaccine-induced immune response and adjustments to pathogen virulence affecting transmission or clearance. We elucidate the role played by epistasis and recombination, with an emphasis on the different protective effects of vaccination. We show that vaccines blocking infection, reducing transmission and/or increasing clearance generate positive epistasis between the vaccine-escape and virulence alleles, favouring strains that carry both mutations, whereas vaccines reducing virulence mortality generate negative epistasis, favouring strains that carry either mutation but not both. High rates of recombination can affect these predictions. If epistasis is positive, frequent recombination can prevent the transient build-up of more virulent escape strains. If epistasis is negative, frequent recombination between loci can create an evolutionary bistability, favouring whichever adaptation is more accessible. Our work provides a timely alternative to the variant-centred perspective on pathogen adaptation and captures the effect of different types of vaccine on the interference between multiple adaptive mutations.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Comment in: Nat Ecol Evol. 2022 Jun;6(6):673-674. (PMID: 35437005)
References: McLean, A. R. Vaccines and their impact on the control of disease. Br. Med. Bull. 54, 545–556 (1998). (PMID: 1032628310.1093/oxfordjournals.bmb.a011709)
Kennedy, D. A. & Read, A. F. Why does drug resistance readily evolve but vaccine resistance does not?. Proc. R. Soc. B 284, 20162562 (2017). (PMID: 28356449537808010.1098/rspb.2016.2562)
Kennedy, D. A. & Read, A. F. Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance. Proc. Natl Acad. Sci. USA 115, 12878–12886 (2018). (PMID: 30559199630497810.1073/pnas.1717159115)
McLean, A. R. Vaccination, evolution and changes in the efficacy of vaccines: a theoretical framework. Proc. R. Soc. B 261, 389–393 (1995). (PMID: 858788010.1098/rspb.1995.0164)
Gupta, S., Ferguson, N. M. & Anderson, R. M. Vaccination and the population structure of antigenically diverse pathogens that exchange genetic material. Proc. R. Soc. B 264, 1435–1443 (1997). (PMID: 9364784168870510.1098/rspb.1997.0200)
Lipsitch, M. Vaccination against colonizing bacteria with multiple serotypes. Proc. Natl Acad. Sci. USA 94, 6571–6576 (1997). (PMID: 91772592109110.1073/pnas.94.12.6571)
Restif, O. & Grenfell, B. T. Vaccination and the dynamics of immune evasion. J. R. Soc. Interface 4, 143–153 (2007). (PMID: 1721053210.1098/rsif.2006.0167)
van Boven, M., Mooi, F. R., Schellekens, J. F. P., de Melker, H. E. & Kretzschmar, M. Pathogen adaptation under imperfect vaccination: implications for pertussis. Proc. R. Soc. B 272, 1617–1624 (2005). (PMID: 16048777155984510.1098/rspb.2005.3108)
Gandon, S., Mackinnon, M. J., Nee, S. & Read, A. F. Imperfect vaccines and the evolution of pathogen virulence. Nature 414, 751–756 (2001). (PMID: 1174240010.1038/414751a)
Gandon, S., Mackinnon, M., Nee, S. & Read, A. F. Imperfect vaccination: some epidemiological and evolutionary consequences. Proc. R. Soc. B 270, 1129–1136 (2003). (PMID: 12816650169135010.1098/rspb.2003.2370)
Andre, J. & Gandon, S. Vaccination, within-host dynamics, and virulence evolution. Evolution 60, 13–23 (2006). (PMID: 1656862710.1111/j.0014-3820.2006.tb01077.x)
Atkins, K. E. et al. Vaccination and reduced cohort duration can drive virulence evolution: Marek’s disease virus and industrialized agriculture. Evolution 67, 851–860 (2012). (PMID: 2346133310.1111/j.1558-5646.2012.01803.x)
Ganusov, V. V. & Antia, R. Imperfect vaccines and the evolution of pathogens causing acute infections in vertebrates. Evolution 60, 957–969 (2006). (PMID: 1681753610.1111/j.0014-3820.2006.tb01174.x)
Williams, P. D. & Day, T. Epidemiological and evolutionary consequences of targeted vaccination. Mol. Ecol. 17, 485–499 (2008). (PMID: 1817351010.1111/j.1365-294X.2007.03418.x)
Bernhauerová, V. Vaccine-driven evolution of parasite virulence and immune evasion in age-structured population: the case of pertussis. Theor. Ecol. 9, 431–442 (2016). (PMID: 10.1007/s12080-016-0300-5)
Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982). (PMID: 675536710.1017/S0031182000055360)
Frank, S. A. Models of parasite virulence. Q. Rev. Biol. 71, 37–78 (1996). (PMID: 891966510.1086/419267)
Alizon, S., Hurford, A., Mideo, N. & van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009). (PMID: 1919638310.1111/j.1420-9101.2008.01658.x)
Cressler, C. E., McLeod, D. V., Rozins, C., van den Hoogen, J. & Day, T. The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. Parasitology 143, 915–930 (2016). (PMID: 2630277510.1017/S003118201500092X)
Witter, R. L. Increased virulence of Marek’s disease virus field isolates. Avian Dis. 41, 149–163 (1997). (PMID: 908733210.2307/1592455)
Read, A. F. et al. Imperfect vaccination can enhance the transmission of highly virulent pathogens. PLoS Biol. 13, e1002198 (2015). (PMID: 26214839451627510.1371/journal.pbio.1002198)
Read, A. F. & Mackinnon, M. J. in Evolution in Health and Disease (eds Stearns, S. C. & Koella, J. C.) Ch. 11 (Oxford Univ. Press, 2008).
Mackinnon, M. J. & Read, A. F. Immunity promotes virulence evolution in a malaria model. PLoS Biol. 2, 1286–1292 (2004). (PMID: 10.1371/journal.pbio.0020230)
Barclay, V. C. et al. The evoutionary consequences of blood-stage vaccination on the rodent malaria Plasmodium chabaudi. PLoS Biol. 10, e1001368 (2012). (PMID: 22870063340912210.1371/journal.pbio.1001368)
Mooi, F. R. et al. Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerg. Infect. Dis. 15, 1206–1213 (2009). (PMID: 19751581281596110.3201/eid1508.081511)
Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–323 (2004). (PMID: 1472658310.1126/science.1090727)
Saad-Roy, C. M. et al. Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. Science 372, 363–370 (2021). (PMID: 33688062812828710.1126/science.abg8663)
Cobey, S., Larremore, D. B., Grad, Y. H. & Lipsitch, M. Concerns about SARS-CoV-2 evolution should not hold back efforts to expand vaccination. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-021-00544-9 (2021).
Kouyos, R. D. et al. The path of least resistance: aggressive or moderate treatment? Proc. R. Soc. B 281, 20140566 (2014). (PMID: 25253451421143910.1098/rspb.2014.0566)
Acevedo, M. A., Dillemuth, F. P., Flick, A. J., Faldyn, M. J. & Elderd, B. D. Virulence-driven trade-offs in disease transmission: a meta-analysis. Evolution 73, 636–647 (2019). (PMID: 3073492010.1111/evo.13692)
Telenti, A. et al. After the pandemic: perspectives on the future trajectory of COVID-19. Nature 596, 495–504 (2021). (PMID: 3423777110.1038/s41586-021-03792-w)
Slatkin, M. Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat. Rev. Genetics 9, 477–485 (2008). (PMID: 1842755710.1038/nrg2361)
Rice, S. H. Evolutionary Theory: Mathematical and Conceptual Foundations (Sinauer Associates, 2004).
Day, T. & Gandon, S. The evolutionary epidemiology of multilocus drug resistance. Evolution 66, 1582–1597 (2012). (PMID: 2251979210.1111/j.1558-5646.2011.01533.x)
McLeod, D. V. & Gandon, S. Understanding the evolution of multiple drug resistance in structured populations. eLife 10, e65645 (2021). (PMID: 34061029820881810.7554/eLife.65645)
de Visser, J. A. G. M., Cooper, T. F. & Elena, S. F. The causes of epistasis. Proc. R. Soc. B 278, 3671–3624 (2011). (PMID: 10.1098/rspb.2011.1537)
Felsenstein, J. The effect of linkage on directional selection. Genetics 52, 349–363 (1965). (PMID: 5861564121085510.1093/genetics/52.2.349)
Lewontin, R. C. & Kojima, K. The evolutionary dynamics of complex polymorphisms. Evolution 14, 458–472 (1960).
de Visser, J. A. G. M. & Elena, S. F. The evolution of sex: empirical insights into the roles of epistasis and drift. Nat. Rev. Genetics 8, 139–149 (2007). (PMID: 1723020010.1038/nrg1985)
Otto, S. P. & Barton, N. H. The evolution of recombination: removing the limits to natural selection. Genetics 147, 879–906 (1997). (PMID: 9335621120820610.1093/genetics/147.2.879)
Fenner, F. J. The Florey lecture, 1983—biological control, as exemplified by smallpox eradication and myxomatosis. Proc. R. Soc. B 218, 259–285 (1983).
Muñoz-Alía, M. Á., Nace, R. A., Zhang, L. & Russell, S. J. Serotypic evolution of measles virus is constrained by multiple co-dominant B cell epitopes on its surface glycoproteins. Cell Rep. Med. 2, 100225 (2021). (PMID: 33948566808011010.1016/j.xcrm.2021.100225)
Kouyos, R. D., Fouchet, D. & Bonhoeffer, S. Recombination and drug resistance in HIV: population dynamics and stochasticity. Epidemics 1, 58–69 (2009). (PMID: 2135275110.1016/j.epidem.2008.11.001)
Gandon, S. & Day, T. The evolutionary epidemiology of vaccination. J. R. Soc. Interface 4, 803–817 (2007). (PMID: 17264055239454010.1098/rsif.2006.0207)
Maynard Smith, J. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 23, 23–35 (1974). (PMID: 10.1017/S0016672300014634)
Harrison, T. J., Hopes, E. A., Oon, C. J., Zanetti, A. R. & Zuckerman, A. J. Independent emergence of a vaccine-induced escape mutant of hepatitis B virus. J. Hepatology 13, S105–S107 (1991). (PMID: 10.1016/0168-8278(91)90037-C)
Mooi, F. R. et al. Polymorphism in the Bordetella pertussis virulence factors P.69/Pertactin and pertussis toxin in the Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect. Immun. 66, 670–675 (1998). (PMID: 945362510795510.1128/IAI.66.2.670-675.1998)
Gandon, S. & Day, T. Evidences of parasite evolution after vaccination. Vaccine 26, C4–C7 (2008). (PMID: 1877352710.1016/j.vaccine.2008.02.007)
Pica, N. & Palese, P. Toward a universal influenza virus vaccine: prospects and challenges. Annu. Rev. Med. 64, 189–202 (2013). (PMID: 2332752210.1146/annurev-med-120611-145115)
Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018). (PMID: 29326426590679910.1038/nrd.2017.243)
Subramanian, R., Graham, A. L., Grenfell, B. T. & Arinaminpathy, N. Universal or specific? A modeling-based comparison of broad-spectrum influenza vaccines against conventional, strain-matched vaccines. PLoS Comput. Biol. 12, e1005204 (2016). (PMID: 27977667515795210.1371/journal.pcbi.1005204)
Viboud, C. et al. Beyond clinical trials: evolutionary and epidemiological considerations for development of a universal influenza vaccine. PLoS Pathog. 16, e1008583 (2020). (PMID: 32970783751402910.1371/journal.ppat.1008583)
Arinaminpathy, N. et al. Impact of cross-protective vaccines on epidemiological and evolutionary dynamics of influenza. Proc. Natl Acad. Sci. USA 109, 3173–3177 (2012). (PMID: 22323589328694410.1073/pnas.1113342109)
Saad-Roy, C. M., McDermott, A. B. & Grenfell, B. T. Dynamic perspectives on the search for a universal influenza vaccine. J. Infect. Dis. 219, S46–S56 (2019). (PMID: 30715467645231510.1093/infdis/jiz044)
Arinaminpathy, N., Riley, S., Barclay, W. S., Saad-Roy, C. & Grenfell, B. Population implications of the deployment of novel universal vaccines against epidemic and pandemic influenza. J. R. Soc. Interface 17, 20190879 (2020). (PMID: 32126190711523410.1098/rsif.2019.0879)
Ekiert, D. C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009). (PMID: 19251591275865810.1126/science.1171491)
Epstein, S. L. & Price, G. E. Cross-protective immunity to influenza A viruses. Expert Rev. Vaccines 9, 1325–1341 (2010). (PMID: 2108711010.1586/erv.10.123)
Yurkovetskiy, L. et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell 183, 739–751.e8 (2020). (PMID: 32991842749202410.1016/j.cell.2020.09.032)
Ozono, S. et al. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat. Commun. 12, 848 (2021). (PMID: 33558493787066810.1038/s41467-021-21118-2)
Jangra, S. et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2, E283–E284 (2021). (PMID: 33846703802616710.1016/S2666-5247(21)00068-9)
Greaney, A. J. et al. Mutational escape from the polyclonal antibody response to SARS-CoV-2 infection is largely shaped by a single class of antibodies. bioRxiv https://doi.org/10.1101/2021.03.17.435863 (2021).
Peck, K. M., Burch, C. L., Heise, M. T. & Baric, R. S. Coronavirus host range expansion and Middle East respiratory syndrome coronavirus emergence: biochemical mechanisms and evolutionary perspectives. Annu. Rev. Virol. 2, 95–117 (2015). (PMID: 2695890810.1146/annurev-virology-100114-055029)
Jackson, B. et al. Generation and transmission of inter-lineage recombinants in the SARS-CoV-2 pandemic. Cell https://doi.org/10.1016/j.cell.2021.08.014 (2021).
Turkahia, Y. Pandemic-scale phylogenomics reveals elevated recombination rates in the SARS-CoV-2 spike region. bioRxiv https://doi.org/10.1101/2021.08.04.455157 (2021).
VanInsberghe, D., Neish, A. S., Lowen, A. C. & Koelle, K. Recombinant SARS-CoV-2 genomes circulated at low levels over the first year of the pandemic. Virus Evol. https://doi.org/10.1093/ve/veab059 (2021).
Can we predict the limits of SARS-CoV-2 variants and their phenotypic consequences? (UK SAGE, 2021); https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1007566/S1335_Long_term_evolution_of_SARS-CoV-2.pdf.
Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020). (PMID: 3330124610.1056/NEJMoa2034577)
Dagan, N. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med. 384, 1412–1423 (2021). (PMID: 3362625010.1056/NEJMoa2101765)
Regev-Yochay, G. et al. Decreased infectivity following BNT162b2 vaccination: a prospective cohort study in Israel. Lancet Reg. Health Eur. 7, 100150 (2021). (PMID: 34250518826163310.1016/j.lanepe.2021.100150)
Ke, R. et al. Longitudinal analysis of SARS-CoV-2 vaccine breakthrough infections reveal limited infectious virus shedding and restricted tissue distribution. medRxiv https://doi.org/10.1101/2021.08.30.21262701 (2021).
Thompson, M. G. et al. Prevention and attenuation of Covid-19 with the BNT162b2 and mRNA-1273 vaccines. N. Engl. J. Med. 385, 320–329 (2021). (PMID: 3419242810.1056/NEJMoa2107058)
Baker, R. E. et al. The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections. Proc. Natl Acad. Sci. USA 117, 30547–30553 (2020). (PMID: 33168723772020310.1073/pnas.2013182117)
Gandon, S. & Lion, S. Targeted vaccination and the speed of SARS-CoV-2 adaptation. Proc. Natl Acad. Sci. USA 119, e2110666119 (2022). (PMID: 35031567878413110.1073/pnas.2110666119)
MATLAB v. 9.6.0 (R2019a) (The MathWorks Inc., 2019).
المشرفين على المادة: 0 (Vaccines)
تواريخ الأحداث: Date Created: 20220419 Date Completed: 20220610 Latest Revision: 20221025
رمز التحديث: 20221213
DOI: 10.1038/s41559-022-01709-y
PMID: 35437006
قاعدة البيانات: MEDLINE
الوصف
تدمد:2397-334X
DOI:10.1038/s41559-022-01709-y