دورية أكاديمية

Molybdenum Carbide Electrocatalyst In Situ Embedded in Porous Nitrogen-Rich Carbon Nanotubes Promotes Rapid Kinetics in Sodium-Metal-Sulfur Batteries.

التفاصيل البيبلوغرافية
العنوان: Molybdenum Carbide Electrocatalyst In Situ Embedded in Porous Nitrogen-Rich Carbon Nanotubes Promotes Rapid Kinetics in Sodium-Metal-Sulfur Batteries.
المؤلفون: Hao H; Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA., Wang Y; Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA., Katyal N; Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA., Yang G; Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA., Dong H; Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA., Liu P; Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA., Hwang S; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA., Mantha J; Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA., Henkelman G; Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA., Xu Y; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA.; Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY, 11790, USA., Boscoboinik JA; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA., Nanda J; Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA., Mitlin D; Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA.
المصدر: Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2022 Jul; Vol. 34 (26), pp. e2106572. Date of Electronic Publication: 2022 May 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 9885358 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4095 (Electronic) Linking ISSN: 09359648 NLM ISO Abbreviation: Adv Mater Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: Sept. 3, 1997- : Weinheim : Wiley-VCH
Original Publication: Deerfield Beach, FL : VCH Publishers, 1989-
مستخلص: This is the first report of molybdenum carbide-based electrocatalyst for sulfur-based sodium-metal batteries. MoC/Mo 2 C is in situ grown on nitrogen-doped carbon nanotubes in parallel with formation of extensive nanoporosity. Sulfur impregnation (50 wt% S) results in unique triphasic architecture termed molybdenum carbide-porous carbon nanotubes host (MoC/Mo 2 C@PCNT-S). Quasi-solid-state phase transformation to Na 2 S is promoted in carbonate electrolyte, with in situ time-resolved Raman, X-ray photoelectron spectroscopy, and optical analyses demonstrating minimal soluble polysulfides. MoC/Mo 2 C@PCNT-S cathodes deliver among the most promising rate performance characteristics in the literature, achieving 987 mAh g -1 at 1 A g -1 , 818 mAh g -1 at 3 A g -1 , and 621 mAh g -1 at 5 A g -1 . The cells deliver superior cycling stability, retaining 650 mAh g -1 after 1000 cycles at 1.5 A g -1 , corresponding to 0.028% capacity decay per cycle. High mass loading cathodes (64 wt% S, 12.7 mg cm -2 ) also show cycling stability. Density functional theory demonstrates that formation energy of Na 2 S x (1 ≤ x ≤ 4) on surface of MoC/Mo 2 C is significantly lowered compared to analogous redox in liquid. Strong binding of Na 2 S x (1 ≤ x ≤ 4) on MoC/Mo 2 C surfaces results from charge transfer between the sulfur and Mo sites on carbides' surface.
(© 2022 Wiley-VCH GmbH.)
References: a) J. B. Goodenough, K. S. Park, J. Am. Chem. Soc. 2013, 135, 1167;.
b) M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.
Y. Wang, D. Zhou, V. Palomares, D. Shanmukaraj, B. Sun, X. Tang, C. Wang, M. Armand, T. Rojo, G. Wang, Energy Environ. Sci. 2020, 13, 3848.
a) Y. Wang, Y. Lai, J. Chu, Z. Yan, Y.-X. Wang, S.-L. Chou, H.-K. Liu, S. X. Dou, X. Ai, H. Yang, Y. Cao, Adv. Mater. 2021, 33, 2100229;.
b) M. K. Aslam, I. D. Seymour, N. Katyal, S. Li, T. Yang, S. J. Bao, G. Henkelman, M. Xu, Nat. Commun. 2020, 11, 5242;.
c) Z. Yan, Y. Liang, W. Hua, X. G. Zhang, W. Lai, Z. Hu, W. Wang, J. Peng, S. Indris, Y. Wang, S. L. Chou, H. Liu, S. X. Dou, ACS Nano 2020, 14, 10284;.
d) Z. Yan, Y. Liang, J. Xiao, W. Lai, W. Wang, Q. Xia, Y. Wang, Q. Gu, H. Lu, S. L. Chou, Y. Liu, H. Liu, S. X. Dou, Adv. Mater. 2020, 32, 1906700;.
e) H. Liu, W. H. Lai, Y. Liang, X. Liang, Z. C. Yan, H. L. Yang, Y. J. Lei, P. Wei, S. Zhou, Q. F. Gu, S. L. Chou, H. K. Liu, S. X. Dou, Y. X. Wang, J. Mater. Chem. A 2021, 9, 566;.
f) Y. X. Wang, B. Zhang, W. Lai, Y. Xu, S. L. Chou, H. K. Liu, S. X. Dou, Adv. Energy Mater. 2017, 7, 1602829;.
g) H. Li, M. Zhao, B. Jin, Z. Wen, H. K. Liu, Q. Jiang, Small 2020, 16, 1907464;.
h) A. Ghosh, A. Kumar, T. Das, A. Ghosh, S. Chakraborty, M. Kar, D. R. MacFarlane, S. Mitra, Adv. Funct. Mater. 2020, 30, 2005669;.
i) B. Guo, W. Du, T. Yang, J. Deng, D. Liu, Y. Qi, J. Jiang, S. J. Bao, M. Xu, Adv. Sci. 2020, 7, 1902617;.
j) W. Bao, C. E. Shuck, W. Zhang, X. Guo, Y. Gogotsi, G. Wang, ACS Nano 2019, 13, 11500;.
k) W. H. Lai, H. Wang, L. Zheng, Q. Jiang, Z. C. Yan, L. Wang, H. Yoshikawa, D. Matsumura, Q. Sun, Y. X. Wang, Q. Gu, J. Z. Wang, H. K. Liu, S. L. Chou, S. X. Dou, Angew. Chem., Int. Ed. 2020, 59, 22171.
Y. Wang, W. Lai, S. Chou, H. Liu, S. Dou, Adv. Mater. 2019, 32, 1903952.
a) X. Hong, J. Mei, L. Wen, Y. Tong, A. J. Vasileff, L. Wang, J. Liang, Z. Sun, S. X. Dou, Adv. Mater. 2019, 31, 1802822;.
b) Q. Zou, Z. Liang, G. Y. Du, C. Y. Liu, E. Y. Li, Y. C. Lu, J. Am. Chem. Soc. 2018, 140, 10740.
X. Yu, A. Manthiram, ChemElectroChem 2014, 1, 1275.
a) H. Zhang, T. Diemant, B. Qin, H. Li, R. J. Behm, S. Passerini, Energies 2020, 13, 836;.
b) I. Bauer, M. Kohl, H. Althues, S. Kaskel, Chem. Commun. 2014, 50, 3208;.
c) X. Huo, Y. Liu, R. Li, J. Li, Ionics 2019, 25, 5373.
a) Y. M. Chen, W. Liang, S. Li, F. Zou, S. M. Bhaway, Z. Qiang, M. Gao, B. D. Vogt, Y. Zhu, J. Mater. Chem. A 2016, 4, 12471;.
b) J. Mou, Y. Li, T. Liu, W. Zhang, M. Li, Y. Xu, L. Zhong, W. Pan, C. Yang, J. Huang, M. Liu, Small Methods 2021, 5, 2100455;.
c) F. Xiao, H. Wang, J. Xu, W. Yang, X. Yang, D. Y. W. Yu, A. L. Rogach, Adv. Energy Mater. 2021, 11, 2100989;.
d) C. Ye, Y. Jiao, D. Chao, T. Ling, J. Shan, B. Zhang, Q. Gu, K. Davey, H. Wang, S. Z. Qiao, Adv. Mater. 2020, 32, 1907557;.
e) F. Xiao, X. Yang, H. Wang, J. Xu, Y. Liu, D. Y. W. Yu, A. L. Rogach, Adv. Energy Mater. 2020, 10, 2000931.
Y. X. Wang, J. Yang, W. Lai, S. L. Chou, Q. F. Gu, H. K. Liu, D. Zhao, S. X. Dou, J. Am. Chem. Soc. 2016, 138, 16576.
Z. Yan, J. Xiao, W. Lai, L. Wang, F. Gebert, Y. Wang, Q. Gu, H. Liu, S. L. Chou, H. Liu, S. X. Dou, Nat. Commun. 2019, 10, 4793.
H. Wang, Z. Tong, R. Yang, Z. Huang, D. Shen, T. Jiao, X. Cui, W. Zhang, Y. Jiang, C. S. Lee, Adv. Energy Mater. 2019, 9, 1903046.
A. Kumar, A. Ghosh, A. Roy, M. R. Panda, M. Forsyth, D. R. MacFarlane, S. Mitra, Energy Storage Mater. 2019, 20, 196.
D. Ma, Y. Li, J. Yang, H. Mi, S. Luo, L. Deng, C. Yan, M. Rauf, P. Zhang, X. Sun, X. Ren, J. Li, H. Zhang, Adv. Funct. Mater. 2018, 28, 1705537.
T. Yang, B. Guo, W. Du, M. K. Aslam, M. Tao, W. Zhong, Y. Chen, S.-J. Bao, X. Zhang, M. Xu, Adv. Sci. 2019, 6, 1901557.
C. Dong, H. Zhou, B. Jin, W. Gao, X. Lang, J. Li, Q. Jiang, J. Mater. Chem. A 2021, 9, 3451.
N. Wang, Y. Wang, Z. Bai, Z. Fang, X. Zhang, Z. Xu, Y. Ding, X. Xu, Y. Du, S. Dou, G. Yu, Energy Environ. Sci. 2020, 13, 562.
B. W. Zhang, T. Sheng, Y. D. Liu, Y. X. Wang, L. Zhang, W. H. Lai, L. Wang, J. Yang, Q. F. Gu, S. L. Chou, H. K. Liu, S. X. Dou, Nat. Commun. 2018, 9, 4082.
S. Luo, J. Ruan, Y. Wang, J. Hu, Y. Song, M. Chen, L. Wu, Small 2021, 17, 2101879.
Z. Huang, B. Song, H. Zhang, F. Feng, W. Zhang, K. Lu, Q. Chen, Adv. Funct. Mater. 2021, 31, 2100666.
a) Y. Li, S. Yao, C. Zhang, Y. He, Y. Wang, Y. Liang, X. Shen, T. Li, S. Qin, W. Wen, Int. J. Energy Res. 2020, 44, 8388;.
b) H. Shi, Z. Sun, W. Lv, S. Wang, Y. Shi, Y. Zhang, S. Xiao, H. Yang, Q. H. Yang, F. Li, J. Mater. Chem. A 2019, 7, 11298;.
c) H. Dai, L. Wang, Y. Zhao, J. Xue, R. Zhou, C. Yu, J. An, J. Zhou, Q. Chen, G. Sun, W. Huang, Research 2021, 2021, 5130420.
H. Hao, T. Hutter, B. L. Boyce, J. Watt, P. Liu, D. Mitlin, Chem. Rev. 2022, 122, 8053.
C. Bommier, D. Mitlin, X. Ji, Prog. Mater. Sci. 2018, 97, 170.
B. Lee, E. Paek, D. Mitlin, S. W. Lee, Chem. Rev. 2019, 119, 5416.
H. Liu, W. H. Lai, Y. Lei, H. Yang, N. Wang, S. Chou, H. K. Liu, S. X. Dou, Y. X. Wang, Adv. Energy Mater. 2022, 12, 2103304.
D. Zhou, Y. Chen, B. Li, H. Fan, F. Cheng, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, Angew. Chem., Int. Ed. 2018, 57, 10168.
D. Zhou, X. Tang, X. Guo, P. Li, D. Shanmukaraj, H. Liu, X. Gao, Y. Wang, T. Rojo, M. Armand, G. Wang, Angew. Chem., Int. Ed. 2020, 59, 16725.
X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang, B. Li, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, Nat. Commun. 2018, 9, 3870.
a) F. Ma, Y. Wan, X. Wang, X. Wang, J. Liang, Z. Miao, T. Wang, C. Ma, G. Lu, J. Han, Y. Huang, Q. Li, ACS Nano 2020, 14, 10115;.
b) J. Q. Chi, X. Shang, S. S. Lu, B. Dong, Z. Z. Liu, K. L. Yan, W. K. Gao, Y. M. Chai, C. G. Liu, Carbon 2017, 124, 555;.
c) Z. Shi, K. Nie, Z. J. Shao, B. Gao, H. Lin, H. Zhang, B. Liu, Y. Wang, Y. Zhang, X. Sun, X. M. Cao, P. Hu, Q. Gao, Y. Tang, Energy Environ. Sci. 2017, 10, 1262;.
d) J.-Q. Chi, W.-K. Gao, J.-H. Lin, B. Dong, J.-F. Qin, Z.-Z. Liu, B. Liu, Y.-M. Chai, C.-G. Liu, J. Catal. 2018, 360, 9;.
e) M. Ji, S. Niu, Y. Du, B. Song, P. Xu, ACS Sustainable Chem. Eng. 2018, 6, 11922.
Y. J. Oh, J. H. Kim, J. Y. Lee, S. K. Park, Y. C. Kang, Chem. Eng. J. 2020, 384, 123344.
a) J. S. Cho, J. K. Lee, Y. C. Kang, Sci. Rep. 2016, 6, 23699;.
b) D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang, L. Zhang, Adv. Energy Mater. 2016, 6, 1501929;.
c) J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, Adv. Mater. 2017, 29, 1604108;.
d) J. H. Choi, S. K. Park, Y. C. Kang, Small 2019, 15, 1803043;.
e) J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Energy Environ. Sci. 2015, 8, 941;.
f) J. Ding, H. L. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. W. Xu, B. Zahiri, X. H. Tan, E. M. Lotfabad, B. C. Olsen, D. Mitlin, ACS Nano 2013, 7, 11004;.
g) H. Wang, Z. W. Xu, A. Kohandehghan, Z. Li, K. Cui, X. H. Tan, T. J. Stephenson, C. K. King'ondu, C. M. B. Holt, B. C. Olsen, J. K. Tak, D. Harfield, A. O. Anyia, D. Mitlin, ACS Nano 2013, 7, 5131;.
h) E. M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W. P. Kalisvaart, M. Hazelton, D. Mitlin, ACS Nano 2014, 8, 7115.
a) E. Markevich, G. Salitra, Y. Talyosef, F. Chesneau, D. Aurbach, J. Electrochem. Soc. 2017, 164, A6244;.
b) Q. Guo, S. Li, X. Liu, H. Lu, X. Chang, H. Zhang, X. Zhu, Q. Xia, C. Yan, H. Xia, Adv. Sci. 2020, 7, 1903246.
A. Y. S. Eng, Y. Wang, D. T. Nguyen, S. Y. Tee, C. Y. J. Lim, X. Y. Tan, M. F. Ng, J. Xu, Z. W. Seh, Nano Lett. 2021, 21, 5401.
S. Wei, S. Xu, A. Agrawral, S. Choudhury, Y. Lu, Z. Tu, L. Ma, L. A. Archer, Nat. Commun. 2016, 7, 11722.
a) J. He, W. Lv, Y. Chen, J. Xiong, K. Wen, C. Xu, W. Zhang, Y. Li, W. Qin, W. He, J. Mater. Chem. A 2018, 6, 10466;.
b) H. Yang, S. Zhou, B. Zhang, S. Chu, H. Guo, Q. Gu, H. Liu, Y. Lei, K. Konstantinov, Y. Wang, S. Chou, H. Liu, S. Dou, Adv. Funct. Mater. 2021, 31, 2102280.
X. Zhang, J. Wang, T. Guo, T. Liu, Z. Wu, L. Cavallo, Z. Cao, D. Wang, Appl. Catal., B 2019, 247, 78.
H. M. Jo, Y. Kim, D. H. Youn, J. Alloys Compd. 2021, 855, 157420.
C. Wu, Y. Lei, L. Simonelli, D. Tonti, A. Black, X. Lu, W. H. Lai, X. Cai, Y. X. Wang, Q. Gu, S. L. Chou, H. K. Liu, G. Wang, S. X. Dou, Adv. Mater. 2022, 34, 2108363.
a) X. M. Zhao, Q. Zhu, S. D. Xu, L. Chen, Z. J. Zuo, X. M. Wang, S. B. Liu, D. Zhang, J. Electroanal. Chem. 2019, 832, 392;.
b) S. Zhang, Y. Yao, X. Jiao, M. Ma, H. Huang, X. Zhou, L. Wang, J. Bai, Y. Yu, Adv. Mater. 2021, 33, 2103846.
a) H. G. Lee, J. T. Lee, K. Eom, Adv. Sustainable Syst. 2018, 2, 1800076;.
b) D. Liu, Z. Li, X. Li, X. Chen, Z. Li, L. Yuan, Y. Huang, ACS Appl. Mater. Interfaces 2022, 14, 6658.
M. R. Busche, P. Adelhelm, H. Sommer, H. Schneider, K. Leitner, J. Janek, J. Power Sources 2014, 259, 289.
H. Kim, J. T. Lee, G. Yushin, J. Power Sources 2013, 226, 256.
Y. V. Mikhaylik, J. R. Akridge, J. Electrochem. Soc. 2004, 151, A1969.
a) A. Y. S. Eng, V. Kumar, Y. Zhang, J. Luo, W. Wang, Y. Sun, W. Li, Z. W. Seh, Adv. Energy Mater. 2021, 11, 2003493;.
b) Y. Wang, H. Dong, N. Katyal, H. Hao, P. Liu, H. Celio, G. Henkelman, J. Watt, D. Mitlin, Adv. Mater. 2022, 34, 2106005.
a) K. Chen, H. Li, Y. Xu, K. Liu, H. Li, X. Xu, X. Qiu, M. Liu, Nanoscale 2019, 11, 5967;.
b) X. Wu, A. Markir, Y. Xu, E. C. Hu, K. T. Dai, C. Zhang, W. Shin, D. P. Leonard, K. I. Kim, X. Ji, Adv. Energy Mater. 2019, 9, 1902422.
S. Xin, Y. X. Yin, Y. G. Guo, L. J. Wan, Adv. Mater. 2014, 26, 1261.
a) B. Yu, A. Huang, D. Chen, K. Srinivas, X. Zhang, X. Wang, B. Wang, F. Ma, C. Liu, W. Zhang, J. He, Z. Wang, Y. Chen, Small 2021, 17, 2100460;.
b) J. He, A. Bhargav, H. Y. Asl, Y. Chen, A. Manthiram, Adv. Energy Mater. 2020, 10, 2001017.
a) Y. Qi, Q. J. Li, Y. Wu, S. J. Bao, C. Li, Y. Chen, G. Wang, M. Xu, Nat. Commun. 2021, 12, 6347;.
b) M. Cuisinier, C. Hart, M. Balasubramanian, A. Garsuch, L. F. Nazar, Adv. Energy Mater. 2015, 5, 1401801;.
c) H. L. Wu, L. A. Huff, A. A. Gewirth, ACS Appl. Mater. Interfaces 2015, 7, 1709.
a) Y. Li, C. Wang, W. Wang, A. Y. S. Eng, M. Wan, L. Fu, E. Mao, G. Li, J. Tang, Z. W. Seh, Y. Sun, ACS Nano 2020, 14, 1148;.
b) J. He, G. Hartmann, M. Lee, G. S. Hwang, Y. Chen, A. Manthiram, Energy Environ. Sci. 2019, 12, 344.
a) S. Li, Z. Han, W. Hu, L. Peng, J. Yang, L. Wang, Y. Zhang, B. Shan, J. Xie, Nano Energy 2019, 60, 153;.
b) K. Xu, X. Liu, J. Liang, J. Cai, K. Zhang, Y. Lu, X. Wu, M. Zhu, Y. Liu, Y. Zhu, G. Wang, Y. Qian, ACS Energy Lett. 2018, 3, 420.
D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heide, Electrochim. Acta 2002, 47, 1423.
a) S. Zhang, G. Wang, B. Wang, J. Wang, J. Bai, H. Wang, Adv. Funct. Mater. 2020, 30, 2001592;.
b) E. Zhang, X. Jia, B. Wang, J. Wang, X. Yu, B. Lu, Adv. Sci. 2020, 7, 2000470;.
c) L. Tao, Y. Yang, H. Wang, Y. Zheng, H. Hao, W. Song, J. Shi, M. Huang, D. Mitlin, Energy Storage Mater. 2020, 27, 212;.
d) X. Ge, H. Di, P. Wang, X. Miao, P. Zhang, H. Wang, J. Ma, L. Yin, ACS Nano 2020, 14, 16022.
H. Tian, H. Tian, S. Wang, S. Chen, F. Zhang, L. Song, H. Liu, J. Liu, G. Wang, Nat. Commun. 2020, 11, 5025.
T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater. 2010, 9, 146.
V. H. Pham, J. A. Boscoboinik, D. J. Stacchiola, E. C. Self, P. Manikandan, S. Nagarajan, Y. Wang, V. G. Pol, J. Nanda, E. Paek, D. Mitlin, Energy Storage Mater. 2019, 20, 71.
Q. Zhang, Y. Wang, Z. W. Seh, Z. Fu, R. Zhang, Y. Cui, Nano Lett. 2015, 15, 3780.
G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354.
معلومات مُعتمدة: Energy Storage Program; DE-AC05 00OR22725 Office of Electricity; National Science Foundation; 1938833 Division of Materials Research; F-1841 Welch Foundation
فهرسة مساهمة: Keywords: Na-S batteries; electrocatalysis; molybdenum carbide catalyst; porous carbon
تواريخ الأحداث: Date Created: 20220422 Latest Revision: 20220701
رمز التحديث: 20240628
DOI: 10.1002/adma.202106572
PMID: 35451133
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4095
DOI:10.1002/adma.202106572