دورية أكاديمية

Magnetic-Core/Gold-Shell Nanoparticles for the Detection of Hydrophobic Chemical Contaminants.

التفاصيل البيبلوغرافية
العنوان: Magnetic-Core/Gold-Shell Nanoparticles for the Detection of Hydrophobic Chemical Contaminants.
المؤلفون: Mills AM; Chemical and Biomedical Engineering Department, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL 32310, USA.; Aero-Propulsion, Mechatronics, and Energy Center, Florida State University, Tallahassee, FL 32310, USA., Strzalka J; Argonne National Laboratory, X-ray Science Division, Lemont, IL 60439, USA., Bernat A; Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA., Rao Q; Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA., Hallinan DT Jr; Chemical and Biomedical Engineering Department, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL 32310, USA.; Aero-Propulsion, Mechatronics, and Energy Center, Florida State University, Tallahassee, FL 32310, USA.
المصدر: Nanomaterials (Basel, Switzerland) [Nanomaterials (Basel)] 2022 Apr 07; Vol. 12 (8). Date of Electronic Publication: 2022 Apr 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: MDPI AG Country of Publication: Switzerland NLM ID: 101610216 Publication Model: Electronic Cited Medium: Print ISSN: 2079-4991 (Print) Linking ISSN: 20794991 NLM ISO Abbreviation: Nanomaterials (Basel) Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Basel, Switzerland : MDPI AG, [2011]-
مستخلص: Magnetic-core/gold-shell nanoparticles (MAuNPs) are of interest for enabling rapid and portable detection of trace adulterants in complex media. Gold coating provides biocompatibility and facile functionalization, and a magnetic core affords analyte concentration and controlled deposition onto substrates for surface-enhanced Raman spectroscopy. Iron oxide cores were synthesized and coated with gold by reduction of HAuCl 4 by NH 2 OH. MAuNPs were grafted with polyethylene glycol (PEG) and/or functionalized with 4-mercaptobenzoic acid (4-MBA) and examined using a variety of microscopic, spectroscopic, magnetometric, and scattering techniques. For MAuNPs grafted with both PEG and 4-MBA, the order in which they were grafted impacted not only the graft density of the individual ligands, but also the overall graft density. Significant Raman signal enhancement of the model analyte, 4-MBA, was observed. This enhancement demonstrates the functionality of MAuNPs in direct detection of trace contaminants. The magnetic deposition rate of MAuNPs in chloroform and water was explored. The presence of 4-MBA slowed the mass deposition rate, and it was postulated that the rate disparity originated from differing NP-substrate surface interactions. These findings emphasize the importance of ligand choice in reference to the medium, target analyte, and substrate material, as well as functionalization procedure in the design of similar sensing platforms.
References: Plasmonics. 2011 Dec;6(4):697-704. (PMID: 22081763)
Anal Chem. 2015 Mar 3;87(5):2771-8. (PMID: 25658511)
J Agric Food Chem. 2019 Nov 13;67(45):12341-12347. (PMID: 31635458)
J Phys Chem B. 2006 Jun 22;110(24):11640-6. (PMID: 16800458)
Nanoscale. 2018 Jul 13;10(27):13202-13211. (PMID: 29971281)
Chem Rev. 2017 Jun 14;117(11):7583-7613. (PMID: 28610424)
Trends Biotechnol. 2009 Feb;27(2):82-9. (PMID: 19135747)
Anal Chem. 2005 May 15;77(10):3261-6. (PMID: 15889917)
Nanomaterials (Basel). 2011 Jun 14;1(1):31-63. (PMID: 28348279)
Anal Chem. 2015 Sep 1;87(17):8977-84. (PMID: 26172120)
Talanta. 2020 May 15;212:120781. (PMID: 32113544)
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30208-30214. (PMID: 33203682)
ACS Appl Mater Interfaces. 2017 Apr 19;9(15):13457-13470. (PMID: 28328194)
Sensors (Basel). 2013 Nov 06;13(11):15187-208. (PMID: 24201319)
Sens Instrum Food Qual Saf. 2010 May 4;4(2):73-81. (PMID: 20953301)
Anal Chim Acta. 2020 Feb 8;1097:176-185. (PMID: 31910958)
Int J Mol Sci. 2013 Mar 18;14(3):6223-40. (PMID: 23507756)
Biosens Bioelectron. 2010 Dec 15;26(4):1178-94. (PMID: 20729060)
Sensors (Basel). 2015 Dec 05;15(12):30736-58. (PMID: 26690169)
Langmuir. 2004 Mar 16;20(6):2472-7. (PMID: 15835712)
Materials (Basel). 2017 Nov 30;10(12):. (PMID: 29189739)
J Agric Food Chem. 2008 Nov 12;56(21):9843-7. (PMID: 18828599)
Chem Phys Lett. 2012 Jan 10;521(C):91-97. (PMID: 22347721)
ACS Omega. 2020 May 19;5(21):12162-12165. (PMID: 32548397)
Anal Chem. 2005 Oct 1;77(19):6147-54. (PMID: 16194072)
Appl Microbiol Biotechnol. 2011 Dec;92(5):1053-61. (PMID: 22005743)
Langmuir. 2016 Apr 26;32(16):4022-33. (PMID: 27018432)
ACS Appl Mater Interfaces. 2019 May 29;11(21):19495-19505. (PMID: 31058488)
J Struct Biol. 2012 Oct;180(1):226-34. (PMID: 22659403)
Colloids Surf B Biointerfaces. 2007 Jul 1;58(1):3-7. (PMID: 16997536)
Chem Soc Rev. 2012 Sep 7;41(17):5706-27. (PMID: 22729179)
Spectrochim Acta A Mol Biomol Spectrosc. 2009 Jul 15;73(2):374-81. (PMID: 19324587)
Talanta. 2012 Oct 15;100:32-7. (PMID: 23141308)
Sci Rep. 2016 Oct 20;6:35339. (PMID: 27762394)
معلومات مُعتمدة: 2017-70001-25984 National Institute of Food and Agriculture; Collaborative Collision focused on Defense Florida State University; DMR-1644779 National Science Foundation; DE-AC02-06CH11357 United States Department of Energy
فهرسة مساهمة: Keywords: Raman; SERS; core-shell nanoparticles; food contamination; grafted nanoparticles; hydrophobic
تواريخ الأحداث: Date Created: 20220423 Latest Revision: 20220429
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC9027997
DOI: 10.3390/nano12081253
PMID: 35457961
قاعدة البيانات: MEDLINE
الوصف
تدمد:2079-4991
DOI:10.3390/nano12081253