دورية أكاديمية

Characterization of diet based nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in rodent models: Histological and biochemical outcomes.

التفاصيل البيبلوغرافية
العنوان: Characterization of diet based nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in rodent models: Histological and biochemical outcomes.
المؤلفون: Akbari G; Medical Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran., Mard SA; Clinical Sciences Research Institute, Alimentary Tract Research Center, Department of Physiology, The school of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran., Savari F; Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran. savari-f@shoushtarums.ac.ir., Barati B; Department of Radiologic Technology, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran., Sameri MJ; Department of Physiology, The School of Medicine, Ahvaz Jundishpur University of Medical Sciences, Ahvaz, Iran.; Department of Physiology, The School of Medicine, Abadan University of Medical Sciences, Abadan, Iran.
المصدر: Histology and histopathology [Histol Histopathol] 2022 Sep; Vol. 37 (9), pp. 813-824. Date of Electronic Publication: 2022 Apr 27.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Histology and Histopathology Country of Publication: Spain NLM ID: 8609357 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1699-5848 (Electronic) Linking ISSN: 02133911 NLM ISO Abbreviation: Histol Histopathol Subsets: MEDLINE
أسماء مطبوعة: Publication: Murcia : Histology and Histopathology
Original Publication: Murcia, Spain : Gutenberg, 1986-
مواضيع طبية MeSH: Non-alcoholic Fatty Liver Disease*/pathology, Humans ; Mice ; Rats ; Animals ; Rodentia ; Liver/pathology ; Diet ; Liver Cirrhosis/pathology ; Disease Models, Animal
مستخلص: Nonalcoholic fatty liver disease (NAFLD), as the most common chronic liver disease, is rapidly increasing worldwide. This complex disorder can include simple liver steatosis to more serious stages of nonalcoholic fibrosis and steatohepatitis (NASH). One of the critical concerns in NASH research is selecting and confiding in relying on preclinical animal models and experimental methods that can accurately reflect the situation in human NASH. Recently, creating nutritional models of NASH with a closer dietary pattern in human has been providing reliable, simple, and reproducible tools that hope to create a better landscape for showing the recapitulation of disease pathophysiology. This review focuses on recent research on rodent models (mice, rats, and hamsters) in the induction of the dietary model of NAFLD /NASH. This research tries to compile the different dietary compositions of NASH, time frames required for disease development, and their impact on liver histological features as well as metabolic parameters.
(©The Author(s) 2022. Open Access. This article is licensed under a Creative Commons CC-BY International License.)
References: Agopian V.G., Kaldas F.M., Hong J.C., Whittaker M., Holt C., Rana A., Zarrinpar A., Petrowsky H., Farmer D. and Yersiz H. (2012). Liver transplantation for nonalcoholic steatohepatitis: the new epidemic. Ann. Surg. 256, 624-633. (PMID: 22964732)
Basciano H., Miller A.E., Naples M., Baker C., Kohen R., Xu E., Su Q., Allister E.M., Wheeler M.B. and Adeli K. (2009). Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis. Am. J. Physiol. Endocrinol. Metab. 297, E462-473. (PMID: 19509184)
Bhathena J., Kulamarva A., Martoni C., Urbanska A.M., Malhotra M., Paul A. and Prakash S. (2011). Diet-induced metabolic hamster model of nonalcoholic fatty liver disease. Diabetes Metab. Syndr. Obes. 4, 195-203. (PMID: PMC313180021760736)
Briand F., Maupoint J., Brousseau E., Breyner N., Bouchet M., Costard C., Leste-Lasserre T., Petitjean M., Chen L., Chabrat A., Richard V., Burcelin R., Dubroca C. and Sulpice T. (2021). Elafibranor improves diet-induced nonalcoholic steatohepatitis associated with heart failure with preserved ejection fraction in Golden Syrian hamsters. Metabolism 117, 154707. (PMID: 33444606)
Byrne C.D. and Targher G. (2015). NAFLD: a multisystem disease. J. Hepatol. 62 (Suppl 1), S47-64. (PMID: 25920090)
Caballero F., Fernández A., Matías N., Martínez L., Fucho R., Elena M., Caballeria J., Morales A., Fernández-Checa J.C. and García-Ruiz C. (2010). Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L- methionine and glutathione. J. Biol. Chem. 285, 18528-18536. (PMID: PMC288177820395294)
Caldwell S.H. and Crespo D.M. (2004). The spectrum expanded: cryptogenic cirrhosis and the natural history of non-alcoholic fatty liver disease. J. Hepatol. 40, 578-584. (PMID: 15030972)
Charlton M., Krishnan A., Viker K., Sanderson S., Cazanave S., McConico A., Masuoko H. and Gores G. (2011). Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G825- 834. (PMID: PMC322031921836057)
de Wit N., Derrien M., Bosch-Vermeulen H., Oosterink E., Keshtkar S., Duval C., de Vogel-van den Bosch J., Kleerebezem M., Müller M. and van der Meer R. (2012). Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G589-599. (PMID: 22700822)
Denk H., Abuja P.M. and Zatloukal K. (2019). Animal models of NAFLD from the pathologist's point of view. Biochim. Biophys Acta Mol. Basis Dis. 1865, 929-942. (PMID: 29746920)
Diehl A.M. (2005). Lessons from animal models of NASH. Hepatol. Res. 33, 138-144. (PMID: 16198624)
Donnelly K.L., Smith C.I., Schwarzenberg S.J., Jessurun J., Boldt M.D. and Parks E.J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343-1351. (PMID: PMC108717215864352)
Dowman J.K., Tomlinson J. and Newsome P. (2010). Pathogenesis of non-alcoholic fatty liver disease. QJM 103, 71-83. (PMID: PMC281039119914930)
Eccleston H.B., Andringa K.K., Betancourt A.M., King A.L., Mantena S.K., Swain T.M., Tinsley H.N., Nolte R.N., Nagy T.R., Abrams G.A. and Bailey S.M. (2011). Chronic exposure to a high-fat diet induces hepatic steatosis, impairs nitric oxide bioavailability, and modifies the mitochondrial proteome in mice. Antioxid. Redox Signal. 15, 447-459. (PMID: PMC281039119914930)
Emamat H., Foroughi F., Eini-Zinab H. and Hekmatdoost A. (2018). The Effects of onion consumption on prevention of nonalcoholic fatty liver disease. Indian J. Clin. Biochem. 33, 75-80. (PMID: PMC576645629371773)
Eng J.M. and Estall J.L. (2021). Diet-induced models of non-alcoholic fatty liver disease: Food for thought on sugar, fat, and cholesterol. Cells 10, 1805-1821. (PMID: PMC830341334359974)
Farrell G.C., Mridha A.R., Yeh M.M., Arsov T., Van Rooyen D.M., Brooling J., Nguyen T., Heydet D., Delghingaro‐Augusto V. and Nolan C.J. (2014). Strain dependence of diet‐induced NASH and liver fibrosis in obese mice is linked to diabetes and inflammatory phenotype. Liver Int. 34, 1084-1093. (PMID: 24107103)
Finelli C. and Tarantino G. (2012). Is there any consensus as to what diet or lifestyle approach is the right one for NAFLD patients? J. Gastrointestin. Liver Dis. 21, 293-302. (PMID: 23012671)
Flores-Costa R., Alcaraz-Quiles J., Titos E., López-Vicario C., Casulleras M., Duran-Güell M., Rius B., Diaz A., Hall K., Shea C., Sarno R., Currie M., Masferrer J.L. and Clària J. (2018). The soluble guanylate cyclase stimulator IW-1973 prevents inflammation and fibrosis in experimental non-alcoholic steatohepatitis. Br. J. Pharmacol. 175, 953-967. (PMID: PMC582529629281143)
Hannou S.A., Haslam D.E., McKeown N.M. and Herman M.A. (2018). Fructose metabolism and metabolic disease. J. Clin. Invest 128, 545-555. (PMID: PMC578525829388924)
Hansen H.H., Ægidius H.M., Oró D., Evers S.S., Heebøll S., Eriksen P.L., Thomsen K.L., Bengtsson A., Veidal S.S., Feigh M., Suppli M.P., Knop F.K., Grønbæk H., Miranda D., Trevaskis J.L., Vrang N., Jelsing J. and Rigbolt K.T.G. (2020). Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis. BMC Gastroentrol. 20, 210-222. (PMID: PMC733644732631250)
Hansen H.H., Feigh M., Veidal S.S., Rigbolt K.T., Vrang N. and Fosgerau K. (2017). Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov. Today 22, 1707-1718. (PMID: 28687459)
Hsu H.C., Dozen M., Matsuno N., Obara H., Tanaka R. and Enosawa S. (2013). Experimental nonalcoholic steatohepatitis induced by neonatal streptozotocin injection and a high-fat diet in rats. Cell Med. 6, 57-62. (PMID: PMC473588726858881)
Hussein O., Grosovski M., Lasri E., Svalb S., Ravid U. and Assy N. (2007). Monounsaturated fat decreases hepatic lipid content in non- alcoholic fatty liver disease in rats. World J. Gastroenterol. 13, 361- 368. (PMID: 17230603PMC4065889)
Ibrahim S.H., Hirsova P., Malhi H. and Gores G.J. (2016). Animal models of nonalcoholic steatohepatitis: Eat, delete, and inflame. Dig. Dis. Sci. 61, 1325-1336. (PMID: PMC483853826626909)
Imajo K., Yoneda M., Kessoku T., Ogawa Y., Maeda S., Sumida Y., Hyogo H., Eguchi Y., Wada K. and Nakajima A. (2013). Rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Int. J. Mol. Sci. 14, 21833-21857. (PMID: PMC385603824192824)
Ishimoto T., Lanaspa M.A., Rivard C.J., Roncal-Jimenez C.A., Orlicky D.J., Cicerchi C., McMahan R.H., Abdelmalek M.F., Rosen H.R., Jackman M.R., MacLean P.S., Diggle C.P., Asipu A., Inaba S., Kosugi T., Sato W., Maruyama S., Sánchez-Lozada L.G., Sautin Y.Y., Hill J.O., Bonthron D.T. and Johnson R. J. (2013). High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology 58, 1632-1643. (PMID: PMC389425923813872)
Ishioka M., Miura K., Minami S., Shimura Y. and Ohnishi H. (2017). Altered gut microbiota composition and immune response in experimental steatohepatitis mouse models. Dig. Dis. Sci. 62, 396- 406. (PMID: 27913996)
Itagaki H., Shimizu K., Morikawa S., Ogawa K. and Ezaki T. (2013). Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice. Int. J. Clin. Exp. Pathol. 6, 2683-2696. (PMID: PMC384324924294355)
Ito M., Suzuki J., Tsujioka S., Sasaki M., Gomori A., Shirakura T., Hirose H., Ito M., Ishihara A., Iwaasa H. and Kanatani A. (2007). Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol. Res. 37, 50-57. (PMID: 17300698)
Jensen V.S., Hvid H., Damgaard J., Nygaard H., Ingvorsen C., Wulff E.M., Lykkesfeldt J. and Fledelius C. (2018). Dietary fat stimulates development of NAFLD more potently than dietary fructose in Sprague-Dawley rats. Diabetol. Metab. Syndr. 10, 4. (PMID: PMC578134129410708)
Kanuri G. and Bergheim I. (2013). In vitro and in vivo models of non- alcoholic fatty liver disease (NAFLD). Int. J. Mol. Sci. 14, 11963- 11980. (PMID: PMC370976623739675)
Kasim-Karakas S.E., Vriend H., Almario R., Chow L. C. and Goodman M.N. (1996). Effects of dietary carbohydrates on glucose and lipid metabolism in golden Syrian hamsters. J. Lab. Clin. Med. 128, 208- 213. (PMID: 8765217)
Kawasaki T., Igarashi K., Koeda T., Sugimoto K., Nakagawa K., Hayashi S., Yamaji R., Inui H., Fukusato T. and Yamanouchi T. (2009). Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis. J. Nutr. 139, 2067-2071. (PMID: 19776184)
Kim M.Y., Cho M.Y., Baik S.K., Park H.J., Jeon H.K., Im C.K., Won C.S., Kim J. W., Kim H.S. and Kwon S.O. (2011). Histological subclassification of cirrhosis using the Laennec fibrosis scoring system correlates with clinical stage and grade of portal hypertension. J. Hepatol. 55, 1004-1009. (PMID: 21354227)
Kim T.H., Choi D., Kim J.Y., Lee J.H. and Koo S.-H. (2017). Fast food diet-induced non-alcoholic fatty liver disease exerts early protective effect against acetaminophen intoxication in mice. BMC Gastroenterol. 17, 124-132. (PMID: PMC570443329179698)
Kirpich I.A., Gobejishvili L.N., Bon Homme M., Waigel S., Cave M., Arteel G., Barve S.S., McClain C. J. and Deaciuc I.V. (2011). Integrated hepatic transcriptome and proteome analysis of mice with high-fat diet-induced nonalcoholic fatty liver disease. J. Nutr. Biochem. 22, 38-45. (PMID: PMC386036120303728)
Kirsch R., Clarkson V., Shephard E.G., Marais D.A., Jaffer M.A., Woodburne V.E., Kirsch R.E. and Hall P. de la M. (2003). Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J. Gastroenterol. Hepatol. 18, 1272-1282. (PMID: 14535984)
Kohli R., Kirby M., Xanthakos S.A., Softic S., Feldstein A. E., Saxena V., Tang P.H., Miles L., Miles M. V., Balistreri W.F., Woods S.C. and Seeley R.J. (2010). High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 52, 934-944. (PMID: PMC293281720607689)
Kopp W. (2019). How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab. Syndr. Obes. 12, 2221-2236. (PMID: PMC681749231695465)
Kořínková L., Pražienková V., Černá L., Karnošová A., Železná B., Kuneš J. and Maletínská L. (2020). Pathophysiology of NAFLD and NASH in Experimental Models: The Role of Food Intake Regulating Peptides. Front Endocrinol. (Lausanne) 11, 597583. (PMID: PMC772642233324348)
Kubota N., Kado S., Kano M., Masuoka N., Nagata Y., Kobayashi T., Miyazaki K. and Ishikawa F. (2013). A high-fat diet and multiple administration of carbon tetrachloride induces liver injury and pathological features associated with non-alcoholic steatohepatitis in mice. Clin. Exp. Pharmacol. Physiol. 40, 422-430. (PMID: 23611112)
Larter C.Z. and Yeh M.M. (2008). Animal models of NASH: getting both pathology and metabolic context right. J. Gastroenterol. Hepatol. 23, 1635-1648. (PMID: 18752564)
Lau J. K., Zhang X. and Yu J. (2017). Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J. Pathol. 241, 36-44. (PMID: PMC521546927757953)
Lee G.S., Yan J.S., Ng R.K., Kakar S. and Maher J.J. (2007). Polyunsaturated fat in the methionine-choline-deficient diet influences hepatic inflammation but not hepatocellular injury. J. Lipid Res. 48, 1885-1896. (PMID: 17526933)
Lichtman A.H., Clinton S.K., Iiyama K., Connelly P.W., Libby P. and Cybulsky M.I. (1999). Hyperlipidemia and atherosclerotic lesion development in LDL receptor-deficient mice fed defined semipurified diets with and without cholate. Arterioscler Thromb. Vasc. Biol. 19, 1938-1944. (PMID: 10446074)
Lieber C.S., Leo M.A., Mak K.M., Xu Y., Cao Q., Ren C., Ponomarenko A. and DeCarli L.M. (2004). Model of nonalcoholic steatohepatitis. Am. J. Clin. Nutr. 79, 502-509. (PMID: 14985228)
Liu X., Wang Y., Ming Y., Song Y., Zhang J., Chen X., Zeng M. and Mao Y. (2015). S100A9: A potential biomarker for the progression of non- alcoholic fatty liver disease and the diagnosis of non-alcoholic steatohepatitis. PLoS One 10, e0127352. (PMID: PMC443777825993652)
London R.M. and George J. (2007). Pathogenesis of NASH: animal models. Clin. Liver Dis. 11, 55-74. (PMID: 17544972)
Matsumoto M., Hada N., Sakamaki Y., Uno A., Shiga T., Tanaka C., Ito T., Katsume A. and Sudoh M. (2013). An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int. J. Exp. Pathol. 94, 93-103. (PMID: PMC360713723305254)
Matthews D.R., Li H., Zhou J., Li Q., Glaser S., Francis H., Alpini G. and Wu C. (2021). Methionine- and choline-deficient diet-induced nonalcoholic steatohepatitis is associated with increased intestinal inflammation. Am. J. Pathol. 191, 1743-1753. (PMID: PMC848505734242656)
Miura K., Kodama Y., Inokuchi S., Schnabl B., Aoyama T., Ohnishi H., Olefsky J.M., Brenner D.A. and Seki E. (2010). Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 139, 323-334. e327. (PMID: PMC463126220347818)
Montandon S.A., Somm E., Loizides-Mangold U., de Vito C., Dibner C. and Jornayvaz F.R. (2019). Multi-technique comparison of atherogenic and MCD NASH models highlights changes in sphingolipid metabolism. Sci. Rep. 9, 16810. (PMID: PMC685619631728041)
Nakae D., Mizumoto Y., Andoh N., Tamura K., Horiguchi K., Endoh T., Kobayashi E., Tsujiuchi T., Denda A., Lombardi B. and Konishi Y. (1995). Comparative changes in the liver of female Fischer-344 rats after short-term feeding of a semipurified or a semisynthetic L-amino acid-defined choline-deficient diet. Toxicol. Pathol. 23, 583-590. (PMID: 8578101)
Nakamura A. and Terauchi Y. (2013). Lessons from mouse models of high-fat diet-induced NAFLD. Int. J. Mol. Sci. 14, 21240-21257. (PMID: PMC385600224284392)
Neuman M.G., Cohen L.B. and Nanau R.M. (2014). Biomarkers in nonalcoholic fatty liver disease. Can J. Gastroenterol. Hepatol. 28, 607-618. (PMID: PMC427717525575111)
Nigro D., Menotti F., Cento A. S., Serpe L., Chiazza F., Dal Bello F., Romaniello F., Medana C., Collino M., Aragno M. and Mastrocola R. (2017). Chronic administration of saturated fats and fructose differently affect SREBP activity resulting in different modulation of Nrf2 and Nlrp3 inflammasome pathways in mice liver. J. Nutr. Biochem. 42, 160-171. (PMID: PMC000000028189916)
Ou T.H., Tung Y.T., Yang T.H. and Chien Y.W. (2019). Melatonin improves fatty liver syndrome by inhibiting the lipogenesis pathway in hamsters with high-fat diet-induced hyperlipidemia. Nutrients 11, 748. (PMID: PMC652067930935037)
Pickens M.K., Ogata H., Soon R.K., Grenert J.P. and Maher J.J. (2010). Dietary fructose exacerbates hepatocellular injury when incorporated into a methionine-choline-deficient diet. Liver Int. 30, 1229-1239. (PMID: PMC359257020536716)
Radhakrishnan S., Ke J.Y. and Pellizzon M.A. (2020). Targeted nutrient modifications in purified diets differentially affect nonalcoholic fatty liver disease and metabolic disease development in rodent models. Curr. Dev. Nutr. 4, nzaa078. (PMID: PMC725058332494762)
Roeb E. and Weiskirchen R. (2021). Fructose and non-alcoholic steatohepatitis. Front Pharmacol. 12, 634344. (PMID: PMC789823933628193)
Sahai A., Malladi P., Melin-Aldana H., Green R. M. and Whitington P. F. (2004). Upregulation of osteopontin expression is involved in the development of nonalcoholic steatohepatitis in a dietary murine model. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G264-273. (PMID: 15044174)
Samuel V.T., Liu Z.X., Qu X., Elder B.D., Bilz S., Befroy D., Romanelli A.J. and Shulman G.I. (2004). Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279, 32345-32353. (PMID: 15166226)
Savard C., Tartaglione E.V., Kuver R., Haigh W.G., Farrell G.C., Subramanian S., Chait A., Yeh M.M., Quinn L.S. and Ioannou G.N. (2013). Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology 57, 81-92. (PMID: PMC534174322508243)
Savari F., Badavi M., Rezaie A., Gharib-Naseri M.K. and Mard S.A. (2019a). Evaluation of the therapeutic potential effect of Fas receptor gene knockdown in experimental model of non-alcoholic steatohepatitis. Free Radic. Res. 53, 486-496. (PMID: 31010354)
Savari F., Mard S.A., Badavi M., Rezaie A. and Gharib-Naseri M.K. (2019b). A new method to induce nonalcoholic steatohepatitis (NASH) in mice. BMC Gastroenterol. 19, 125. (PMID: PMC663221231307427)
Sberna A. L., Bouillet B., Rouland A., Brindisi M. C., Nguyen A., Mouillot T., Duvillard L., Denimal D., Loffroy R., Vergès B., Hillon P. and Petit J.M. (2018). European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) and European Association for the Study of Obesity (EASO) clinical practice recommendations for the management of non-alcoholic fatty liver disease: evaluation of their application in people with Type 2 diabetes. Diabet. Med. 35, 368-375. (PMID: 29247558)
Schuppan D. and Schattenberg J.M. (2013). Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J. Gastroenterol. Hepatol. 28 (Suppl 1), 68-76. (PMID: 23855299)
Schuppan D., Surabattula R. and Wang X.Y. (2018). Determinants of fibrosis progression and regression in NASH. J. Hepatol. 68, 238-250. (PMID: 29154966)
Soret P.A., Magusto J., Housset C. and Gautheron J. (2020). In vitro and in vivo models of non-alcoholic fatty liver disease: A critical appraisal. J. Clin. Med. 10, 36. (PMID: PMC779493633374435)
Stephenson K., Kennedy L., Hargrove L., Demieville J., Thomson J., Alpini G. and Francis H. (2018). Updates on dietary models of nonalcoholic fatty liver disease: Current studies and insights. Gene Exp. 18, 5-17. (PMID: PMC586097129096730)
Svendsen P., Graversen J.H., Etzerodt A., Hager H., Røge R., Grønbæk H., Christensen E.I., Møller H.J., Vilstrup H. and Moestrup S.K. (2017). Antibody-directed glucocorticoid targeting to CD163 in M2-type macrophages attenuates fructose-induced liver inflammatory changes. Mol. Ther. Methods Clin. Dev. 4, 50-61. (PMID: PMC536331928344991)
Szczepaniak L.S., Nurenberg P., Leonard D., Browning J.D., Reingold J.S., Grundy S., Hobbs H.H. and Dobbins R.L. (2005). Magnetic resonance spectroscopy to measure hepatic triglyceride content: Prevalence of hepatic steatosis in the general population. Am. J. Physiol. Endocrinol. Metab. 288, E462-468. (PMID: 15339742)
Tashiro K., Takai S., Jin D., Yamamoto H., Komeda K., Hayashi M., Tanaka K., Tanigawa N. and Miyazaki M. (2010). Chymase inhibitor prevents the nonalcoholic steatohepatitis in hamsters fed a methionine- and choline-deficient diet. Hepatol. Res. 40, 514-523. (PMID: 20374300)
Tetri L.H., Basaranoglu M., Brunt E.M., Yerian L.M. and Neuschwander- Tetri B.A. (2008). Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G987- 995. (PMID: PMC405936618772365)
Tølbøl K.S., Kristiansen M.N., Hansen H.H., Veidal S.S., Rigbolt K.T., Gillum M.P., Jelsing J., Vrang N. and Feigh M. (2018). Metabolic and hepatic effects of liraglutide, obeticholic acid and elafibranor in diet-induced obese mouse models of biopsy-confirmed nonalcoholic steatohepatitis. World J. Gastroenterol. 24, 179-194. (PMID: PMC576893729375204)
Tolosa L., Bonora-Centelles A., Teresa Donato M., Pareja E., Negro A., López S., Castell J.V. and José Gómez-Lechón M. (2011). Steatotic liver: a suitable source for the isolation of hepatic progenitor cells. Liver Int. 31, 1231-1238. (PMID: 22093411)
Torres Silva G., Di Pietro Fernandes C., Hiane P.A., Freitas K.C., Figueiredo P.S., Inada A.C., Filiú W.F., Maldonade I.R., Nunes Â.A., Oliveira L.C.S., Caires A.R.L., Michels F., Candido C.J., Cavalheiro L.F., Arakaki Asato M., Rodrigues Donadon J., Bacelar de Faria B., Tatara M.B., Rosa Croda J.H., Pott A., Nazário C.E.D. and Guimarães R.C.A. (2020). Caryocar brasiliense cambess. Pulp oil supplementation reduces total cholesterol, LDL-c, and Non-HDL-c in Animals. Molecules 25, 4530. (PMID: PMC758270833022905)
Tzeng T.F., Liou S.S., Chang C.J. and Liu I.M. (2015). [6]-gingerol dampens hepatic steatosis and inflammation in experimental nonalcoholic steatohepatitis. Phytomedicine 22, 452-461. (PMID: 25925967)
van der Heijden R.A., Sheedfar F., Morrison M.C., Hommelberg P.P., Kor D., Kloosterhuis N.J., Gruben N., Youssef S.A., de Bruin A., Hofker M.H., Kleemann R., Koonen D.P. and Heeringa P. (2015). High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6j mice. Aging (Albany NY) 7, 256-268. (PMID: PMC442909025979814)
Van Herck M.A., Vonghia L. and Francque S.M. (2017). Animal models of nonalcoholic fatty liver disease - A starter's guide. Nutrients 9, 1072. (PMID: PMC569168928953222)
Verbeek J., Lannoo M., Pirinen E., Ryu D., Spincemaille P., Vander Elst I., Windmolders P., Thevissen K., Cammue B.P. and van Pelt J. (2015). Roux-en-y gastric bypass attenuates hepatic mitochondrial dysfunction in mice with non-alcoholic steatohepatitis. Gut 64, 673- 683. (PMID: 24917551)
Veteläinen R., van Vliet A. and van Gulik T. M. (2007). Essential pathogenic and metabolic differences in steatosis induced by choline or methione-choline deficient diets in a rat model. J. Gastroenterol. Hepatol. 22, 1526-1533. (PMID: 17716355)
Vial G., Dubouchaud H., Couturier K., Cottet-Rousselle C., Taleux N., Athias A., Galinier A., Casteilla L. and Leverve X.M. (2011). Effects of a high-fat diet on energy metabolism and ROS production in rat liver. J. Hepatol. 54, 348-356. (PMID: 21109325)
Weltman M.D., Farrell G.C. and Liddle C. (1996). Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology 111, 1645-1653. (PMID: 8942745)
Yamazaki Y., Kakizaki S., Takizawa D., Ichikawa T., Sato K., Takagi H. and Mori M. (2008). Interstrain differences in susceptibility to non- alcoholic steatohepatitis. J. Gastroenterol. Hepatol. 23, 276-282. (PMID: 17868334)
Ying-Rong L., Zhang M.-H., Jian-Guang L. and Zhang H. (2021). Pathogenesis of NASH and promising natural products. Chin. J. Nat. Med. 19, 12-27. (PMID: 33516448)
Younossi Z., Anstee Q.M., Marietti M., Hardy T., Henry L., Eslam M., George J. and Bugianesi E. (2018). Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11-20. (PMID: 28930295)
Younossi Z.M. (2019). Non-alcoholic fatty liver disease - A global public health perspective. J. Hepatol. 70, 531-544. (PMID: 30414863)
تواريخ الأحداث: Date Created: 20220427 Date Completed: 20221025 Latest Revision: 20221025
رمز التحديث: 20221213
DOI: 10.14670/HH-18-462
PMID: 35475465
قاعدة البيانات: MEDLINE
الوصف
تدمد:1699-5848
DOI:10.14670/HH-18-462