دورية أكاديمية

Gray matter volume alteration is associated with insistence on sameness and cognitive flexibility in autistic youth.

التفاصيل البيبلوغرافية
العنوان: Gray matter volume alteration is associated with insistence on sameness and cognitive flexibility in autistic youth.
المؤلفون: Seng GJ; Department of Psychiatry, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan.; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan., Lai MC; Department of Psychiatry, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan.; The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.; Department of Psychiatry and Autism Research Unit, The Hospital for Sick Children, Toronto, Canada.; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.; Department of Psychiatry, Autism Research Centre, University of Cambridge, Cambridge, UK., Goh JOS; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.; Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan., Tseng WI; College of Medicine, Institute of Medical Device and Imaging, National Taiwan University, Taipei, Taiwan., Gau SS; Department of Psychiatry, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan.; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.; Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan.
المصدر: Autism research : official journal of the International Society for Autism Research [Autism Res] 2022 Jul; Vol. 15 (7), pp. 1209-1221. Date of Electronic Publication: 2022 May 02.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons, Inc Country of Publication: United States NLM ID: 101461858 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1939-3806 (Electronic) Linking ISSN: 19393806 NLM ISO Abbreviation: Autism Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons, Inc.
مواضيع طبية MeSH: Autism Spectrum Disorder*/complications , Autism Spectrum Disorder*/psychology , Autistic Disorder*/complications, Adolescent ; Brain/diagnostic imaging ; Cognition ; Gray Matter/diagnostic imaging ; Humans ; Magnetic Resonance Imaging
مستخلص: Restricted and repetitive behaviors (RRBs) are hallmark characteristics of autism spectrum disorder (ASD). Previous studies suggest that insistence on sameness (IS) characterized as higher-order RRBs may be a promising subgrouping variable for ASD. Cognitive inflexibility may underpin IS behaviors. However, the neuroanatomical correlates of IS and associated cognitive functions remain unclear. We analyzed data from 140 autistic youth and 124 typically developing (TD) youth (mean age = 15.8 years). Autistic youth were stratified by median-split based on three current IS items in the autism diagnostic interview-revised into two groups (high, HIS, n = 70, and low, LIS, n = 70). Differences in cognitive flexibility were assessed by the Cambridge neuropsychological test automated battery (CANTAB). T1-weighted brain structural images were analyzed using voxel-based morphometry (VBM) to identify differences in gray matter (GM) volume among the three groups. GM volume of regions showing group differences was then correlated with cognitive flexibility. The HIS group showed decreased GM volumes in the left supramarginal gyrus compared to the LIS group and increased GM volumes in the vermis VIII and left cerebellar lobule VIII compared to TD individuals. We did not find significant correlations between regional GM volumes and extra-dimensional shift errors. IS may be a unique RRB component and a potentially valuable stratifier of ASD. However, the neurocognitive underpinnings require further clarification. LAY SUMMARY: The present study found parietal, temporal and cerebellar gray matter volume alterations in autistic youth with greater insistence on sameness. The findings suggest that insistence on sameness may be a useful feature to parse the heterogeneity of the autism spectrum yet further research investigating the underlying neurocognitive mechanism is warranted.
(© 2022 International Society for Autism Research, Wiley Periodicals LLC.)
References: Amaral, D. G., Li, D., Libero, L., Solomon, M., Van de Water, J., Mastergeorge, A., Naigles, L., Rogers, S., & Wu Nordahl, C. (2017). In pursuit of neurophenotypes: The consequences of having autism and a big brain. Autism Research, 10(5), 711-722. https://doi.org/10.1002/aur.1755.
Ameis, S., & Szatmari, P. (2012). Imaging-genetics in autism spectrum disorder: Advances, translational impact, and future directions. Frontiers in Psychiatry, 3, 46. https://doi.org/10.3389/fpsyt.2012.00046.
American Psychiatric Association (Ed.). (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Association.
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95-113. https://doi.org/10.1016/j.neuroimage.2007.07.007.
Baggetta, P., & Alexander, P. A. (2016). Conceptualization and operationalization of executive function. Mind, Brain, and Education, 10(1), 10-33. https://doi.org/10.1111/mbe.12100.
Barbey, A. K., Colom, R., & Grafman, J. (2013). Architecture of cognitive flexibility revealed by lesion mapping. NeuroImage, 82, 547-554. https://doi.org/10.1016/j.neuroimage.2013.05.087.
Bauman, M. L., & Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: A review and future directions. International Journal of Developmental Neuroscience, 23(2-3), 183-187. https://doi.org/10.1016/j.ijdevneu.2004.09.006.
Bedford, S. A., Park, M. T. M., Devenyi, G. A., Tullo, S., Germann, J., Patel, R., Anagnostou, E., Baron-Cohen, S., Bullmore, E. T., Chura, L. R., Craig, M. C., Ecker, C., Floris, D. L., Holt, R. J., Lenroot, R., Lerch, J. P., Lombardo, M., Murphy, D. G. M., Raznahan, A., … Chakravarty, M. M. (2020). Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder. Molecular Psychiatry, 25(3), 614-628. https://doi.org/10.1038/s41380-019-0420-6.
Bishop, S. L., Hus, V., Duncan, A., Huerta, M., Gotham, K., Pickles, A., Kreiger, A., Buja, A., Lund, S., & Lord, C. (2013). Subcategories of restricted and repetitive behaviors in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(6), 1287-1297. https://doi.org/10.1007/s10803-012-1671-0.
Bishop, S. L., Richler, J., & Lord, C. (2006). Association between restricted and repetitive behaviors and nonverbal IQ in children with autism spectrum disorders. Child Neuropsychology, 12(4-5), 247-267. https://doi.org/10.1007/s10803-012-1671-0.
Cannon, D. S., Miller, J. S., Robison, R. J., Villalobos, M. E., Wahmhoff, N. K., Allen-Brady, K., McMahon, W. M., & Coon, H. (2010). Genome-wide linkage analyses of two repetitive behavior phenotypes in Utah pedigrees with autism spectrum disorders. Molecular Autism, 1(1), 3. https://doi.org/10.1186/2040-2392-1-3.
Chen, S. F., Chien, Y. L., Wu, C. T., Shang, C. Y., Wu, Y. Y., & Gau, S. S. (2016). Deficits in executive functions among youths with autism spectrum disorders: An age-stratified analysis. Psychological Medicine, 46(8), 1625-1638. https://doi.org/10.1017/S0033291715002238.
Cheung, C., Chua, S., Cheung, V., Khong, P., Tai, K., Wong, T., … McAlonan, G. (2009). White matter fractional anisotrophy differences and correlates of diagnostic symptoms in autism. Journal of Child Psychology and Psychiatry, 50(9), 1102-1112. https://doi.org/10.1111/j.1469-7610.2009.02086.x.
Chumbley, J. R., & Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. NeuroImage, 44(1), 62-70. https://doi.org/10.1016/j.neuroimage.2008.05.021.
Clarkson, M. J., Cardoso, M. J., Ridgway, G. R., Modat, M., Leung, K. K., Rohrer, J. D., Fox, N. C., & Ourselin, S. (2011). A comparison of voxel and surface based cortical thickness estimation methods. NeuroImage, 57(3), 856-865. https://doi.org/10.1016/j.neuroimage.2011.05.053.
Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., Chisum, H. J., Moses, P., Pierce, K., Lord, C., Lincoln, A. J., Pizzo, S., Schreibman, L., Haas, R. H., Akshoomoff, N. A., & Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57(2), 245-254. https://doi.org/10.1212/wnl.57.2.245.
Cuccaro, M. L., Shao, Y., Grubber, J., Slifer, M., Wolpert, C. M., Donnelly, S. L., Abramson, R. K., Ravan, S. A., Wright, H. H., DeLong, G. R., & Pericak-Vance, M. A. (2003). Factor analysis of restricted and repetitive behaviors in autism using the autism diagnostic interview-R. Child Psychiatry and Human Development, 34(1), 3-17. https://doi.org/10.1023/A:1025321707947.
Demetriou, E. A., DeMayo, M. M., & Guastella, A. J. (2019). Executive function in autism spectrum disorder: History, theoretical models, empirical findings and potential as an endophenotype. Frontiers in Psychiatry, 10, 753. https://doi.org/10.3389/fpsyt.2019.00753.
DeRamus, T. P., & Kana, R. K. (2015). Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders. NeuroImage: Clinical, 7, 525-536. https://doi.org/10.1016/j.nicl.2014.11.004.
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. https://doi.org/10.1146/annurev-psych-113011-143750.
Dickson, P. E., Cairns, J., Goldowitz, D., & Mittleman, G. (2017). Cerebellar contribution to higher and lower order rule learning and cognitive flexibility in mice. Neuroscience, 345, 99-109. https://doi.org/10.1016/j.neuroscience.2016.03.040.
Dirks, B., Romero, C., Voorhies, W., Kupis, L., Nomi, J. S., Dajani, D. R., Odriozola, P., Burrows, C. A., Beaumont, A. L., Cardona, S. M., Parlade, M. V., Alessandri, M., Britton, J. C., & Uddin, L. Q. (2020). Neural responses to a putative set-shifting task in children with autism spectrum disorder. Autism Research, 13(9), 1501-1515. https://doi.org/10.1002/aur.2347.
D'Mello, A. M., Crocetti, D., Mostofsky, S. H., & Stoodley, C. J. (2015). Cerebellar gray matter and lobular volumes correlate with core autism symptoms. NeuroImage: Clinical, 7, 631-639. https://doi.org/10.1016/j.nicl.2015.02.007.
Ecker, C., Suckling, J., Deoni, S. C., Lombardo, M. V., Bullmore, E. T., Baron-Cohen, S., Catani, M., Jezzard, P., Barnes, A., Bailey, A. J., Williams, S. C., & Murphy, D. G. M. MRC AIMS Consortium. (2012). Brain anatomy and its relationship to behavior in adults with autism spectrum disorder: A multicenter magnetic resonance imaging study. JAMA Psychiatry, 69(2), 195-209. https://doi.org/10.1001/archgenpsychiatry.2011.1251.
Eisenberg, I. W., Wallace, G. L., Kenworthy, L., Gotts, S. J., & Martin, A. (2015). Insistence on sameness relates to increased covariance of gray matter structure in autism spectrum disorder. Molecular Autism, 6(1), 54. https://doi.org/10.1186/s13229-015-0047-7.
Fatemi, S. H., Aldinger, K. A., Ashwood, P., Bauman, M. L., Blaha, C. D., Blatt, G. J., Chauhan, A., Chauhan, V., Dager, S. R., Dickson, P. E., Estes, A. M., Goldowitz, D., Heck, D. H., Kemper, T. L., King, B. H., Martin, L. A., Millen, K. J., Mittleman, G., Mosconi, M. W., … Welsh, J. P. (2012). Consensus paper: Pathological role of the cerebellum in autism. The Cerebellum, 11(3), 777-807. https://doi.org/10.1007/s12311-012-0355-9.
Fox, S. E., Levitt, P., & Nelson, C. A., III. (2010). How the timing and quality of early experiences influence the development of brain architecture. Child Development, 81(1), 28-40. https://doi.org/10.1111/j.1467-8624.2009.01380.x.
Gau, S. S., Chong, M. Y., Chen, T. H., & Cheng, A. T. (2005). A 3-year panel study of mental disorders among adolescents in Taiwan. American Journal of Psychiatry, 162(7), 1344-1350. https://doi.org/10.1176/appi.ajp.162.7.1344.
Gau, S. S.-F., Chou, M.-C., Lee, J.-C., Wong, C.-C., Chou, W.-J., Chen, M.-F., Soong, W.-T., & Wu, Y.-Y. (2010). Behavioral problems and parenting style among Taiwanese children with autism and their siblings. Psychiatry and Clinical Neurosciences, 64(1), 70-78. https://doi.org/10.1111/j.1440-1819.2009.02034.x.
Gau, S. S.-F., Liu, L.-T., Wu, Y.-Y., Chiu, Y.-N., & Tsai, W.-C. (2013). Psychometric properties of the Chinese version of the social responsiveness scale. Research in Autism Spectrum Disorders, 7(2), 349-360. https://doi.org/10.1016/j.rasd.2012.10.004.
Geurts, H. M., Corbett, B., & Solomon, M. (2009). The paradox of cognitive flexibility in autism. Trends in Cognitive Sciences, 13(2), 74-82. https://doi.org/10.1016/j.tics.2008.11.006.
Gotham, K., Bishop, S. L., Hus, V., Huerta, M., Lund, S., Buja, A., Krieger, A., & Lord, C. (2013). Exploring the relationship between anxiety and insistence on sameness in autism spectrum disorders. Autism Research, 6(1), 33-41. https://doi.org/10.1002/aur.1263.
Green, V. A., Sigafoos, J., O'Reilly, M., Pituch, K. A., Didden, R., Lancioni, G. E., & Singh, N. N. (2007). Behavioral flexibility in individuals with autism: Theory, assessment, and intervention. In Autism research advances (pp. 63-77). Hauppauge, NY: Nova Science Publishers, Inc.
Hallahan, B., Daly, E., McAlonan, G., Loth, E., Toal, F., O'Brien, F., Robertson, D., Hales, S., Murphy, C., Murphy, K. C., & Murphy, D. G. M. (2009). Brain morphometry volume in autistic spectrum disorder: A magnetic resonance imaging study of adults. Psychological Medicine, 39(2), 337-346. https://doi.org/10.1017/S0033291708003383.
Hampson, D. R., & Blatt, G. J. (2015). Autism spectrum disorders and neuropathology of the cerebellum. Frontiers in Neuroscience, 9, 420. https://doi.org/10.3389/fnins.2015.00420.
Hegarty, J. P., Pegoraro, L. F. L., Lazzeroni, L. C., Raman, M. M., Hallmayer, J. F., Monterrey, J. C., Cleveland, S. C., Wolke, O. N., Phillips, J. M., Reiss, A. L., & Hardan, A. Y. (2020). Genetic and environmental influences on structural brain measures in twins with autism spectrum disorder. Molecular Psychiatry, 25(10), 2556-2566. https://doi.org/10.1038/s41380-018-0330-z.
Hertz-Picciotto, I., Schmidt, R. J., & Krakowiak, P. (2018). Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Research, 11(4), 554-586. https://doi.org/10.1002/aur.1938.
Hollander, E., Anagnostou, E., Chaplin, W., Esposito, K., Haznedar, M. M., Licalzi, E., Wasserman, S., Soorya, L., & Buchsbaum, M. (2005). Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biological Psychiatry, 58(3), 226-232. https://doi.org/10.1016/j.biopsych.2005.03.040.
Hus, V., Pickles, A., Cook, E. H., Jr., Risi, S., & Lord, C. (2007). Using the autism diagnostic interview-Revised to increase phenotypic homogeneity in genetic studies of autism. Biological Psychiatry, 61(4), 438-448. https://doi.org/10.1016/j.biopsych.2006.08.044.
Jung, K.-I., Park, M.-H., Park, B., Kim, S.-Y., Kim, Y. O., Kim, B.-N., Park, S., & Song, C.-H. (2019). Cerebellar gray matter volume, executive function, and insomnia: Gender differences in adolescents. Scientific Reports, 9(1), 855. https://doi.org/10.1038/s41598-018-37154-w.
Lainhart, J. E., Bigler, E. D., Bocian, M., Coon, H., Dinh, E., Dawson, G., Deutsch, C. K., Dunn, M., Estes, A., Tager-Flusberg, H., Folstein, S., Hepburn, S., Hyman, S., McMahon, W., Minshew, N., Munson, J., Osann, K., Ozonoff, S., Rodier, P., … Volkmar, F. (2006). Head circumference and height in autism: A study by the collaborative program of excellence in autism. American Journal of Medical Genetics Part A, 140A(21), 2257-2274. https://doi.org/10.1002/ajmg.a.31465.
Landry, O., & Al-Taie, S. (2016). A meta-analysis of the Wisconsin card sort task in autism. Journal of Autism and Developmental Disorders, 46(4), 1220-1235. https://doi.org/10.1007/s10803-015-2659-3.
Langen, M., Bos, D., Noordermeer, S. D., Nederveen, H., van Engeland, H., & Durston, S. (2014). Changes in the development of striatum are involved in repetitive behavior in autism. Biological Psychiatry, 76(5), 405-411. https://doi.org/10.1016/j.biopsych.2013.08.013.
Langen, M., Schnack, H. G., Nederveen, H., Bos, D., Lahuis, B. E., de Jonge, M. V., van Engeland, H., & Durston, S. (2009). Changes in the developmental trajectories of striatum in autism. Biological Psychiatry, 66(4), 327-333. https://doi.org/10.1016/j.biopsych.2009.03.017.
Le Couteur, A., Rutter, M., Lord, C., Rios, P., Robertson, S., Holdgrafer, M., & McLennan, J. (1989). Autism diagnostic interview: A standardized investigator-based instrument. Journal of Autism and Developmental Disorders, 19(3), 363-387. https://doi.org/10.1007/BF02212936.
Lee, J. K., Andrews, D. S., Ozonoff, S., Solomon, M., Rogers, S., Amaral, D. G., & Nordahl, C. W. (2021). Longitudinal evaluation of cerebral growth across childhood in boys and girls with autism spectrum disorder. Biological Psychiatry, 90(5), 286-294.
Lenroot, R., & Yeung, P. K. (2013). Heterogeneity within autism spectrum disorders: What have we learned from neuroimaging studies? Frontiers in Human Neuroscience, 7, 733. https://doi.org/10.3389/fnhum.2013.00733.
Lin, H.-Y., Ni, H.-C., Lai, M.-C., Tseng, W.-Y. I., & Gau, S. S.-F. (2015). Regional brain volume differences between males with and without autism spectrum disorder are highly age-dependent. Molecular Autism, 6(1), 29. https://doi.org/10.1186/s13229-015-0022-3.
Lopez, B. R., Lincoln, A. J., Ozonoff, S., & Lai, Z. (2005). Examining the relationship between executive functions and restricted, repetitive symptoms of autistic disorder. Journal of Autism and Developmental Disorders, 35(4), 445-460. https://doi.org/10.1007/s10803-005-5035-x.
Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659-685. https://doi.org/10.1007/bf02172145.
Martinez-Murcia, F. J., Lai, M. C., Gorriz, J. M., Ramírez, J., Young, A. M., Deoni, S. C., Ecker, C., Lombardo, M. V., Baron-Cohen, S., Murphy, D. G. M., Bullmore, E. T., Suckling, J., & MRC AIMS Consortium. (2017). On the brain structure heterogeneity of autism: Parsing out acquisition site effects with significance-weighted principal component analysis. Human Brain Mapping, 38(3), 1208-1223. https://doi.org/10.1002/hbm.23449.
Miller, H. L., Ragozzino, M. E., Cook, E. H., Sweeney, J. A., & Mosconi, M. W. (2015). Cognitive set shifting deficits and their relationship to repetitive behaviors in autism spectrum disorder. Journal of Autism and Developmental Disorders, 45(3), 805-815. https://doi.org/10.1007/s10803-014-2244-1.
Mo, K., Sadoway, T., Bonato, S., Ameis, S. H., Anagnostou, E., Lerch, J. P., Taylor, M. J., & Lai, M.-C. (2021). Sex/gender differences in the human autistic brains: A systematic review of 20years of neuroimaging research. NeuroImage: Clinical, 32, 102811. https://doi.org/10.1016/j.nicl.2021.102811.
Mosconi, M. W., Kay, M., D'Cruz, A. M., Seidenfeld, A., Guter, S., Stanford, L. D., & Sweeney, J. A. (2009). Impaired inhibitory control is associated with higher-order repetitive behaviors in autism spectrum disorders. Psychological Medicine, 39(9), 1559-1566. https://doi.org/10.1017/S0033291708004984.
Müller, R.-A., & Fishman, I. (2018). Brain connectivity and neuroimaging of social networks in autism. Trends in Cognitive Sciences, 22(12), 1103-1116. https://doi.org/10.1016/j.tics.2018.09.008.
O'Hearn, K., Asato, M., Ordaz, S., & Luna, B. (2008). Neurodevelopment and executive function in autism. Development and Psychopathology, 20(4), 1103-1132. https://doi.org/10.1017/S0954579408000527.
Ozonoff, S., Cook, I., Coon, H., Dawson, G., Joseph, R. M., Klin, A., McMahon, W. M., Minshew, N., Munson, J. A., Pennington, B. F., Rogers, S. J., Spence, M. A., Tager-Flusberg, H., Volkmar, F. R., & Wrathall, D. (2004). Performance on Cambridge neuropsychological test automated battery subtests sensitive to frontal lobe function in people with autistic disorder: Evidence from the collaborative programs of excellence in autism network. Journal of Autism and Developmental Disorders, 34(2), 139-150. https://doi.org/10.1023/B:JADD.0000022605.81989.cc.
Palmen, S. J. M. C., Hulshoff Pol, H. E., Kemner, C., Schnack, H. G., Durston, S., Lahuis, B. E., Kahn, R. S., & Van Engeland, H. (2004). Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder. Psychological Medicine, 35(4), 561-570. https://doi.org/10.1017/S0033291704003496.
Pierce, K., & Courchesne, E. (2001). Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biological Psychiatry, 49(8), 655-664. https://doi.org/10.1016/S0006-3223(00)01008-8.
Pote, I., Wang, S., Sethna, V., Blasi, A., Daly, E., Kuklisova-Murgasova, M., Lloyd-Fox, S., Mercure, E., Busuulwa, P., Stoencheva, V., Charman, T., Williams, S. C. R., Johnson, M. H., Murphy, D. G. M., & McAlonan, G. M., BASIS Team. (2019). Familial risk of autism alters subcortical and cerebellar brain anatomy in infants and predicts the emergence of repetitive behaviors in early childhood. Autism Research, 12(4), 614-627. https://doi.org/10.1002/aur.2083.
Richler, J., Bishop, S. L., Kleinke, J. R., & Lord, C. (2007). Restricted and repetitive behaviors in young children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(1), 73-85. https://doi.org/10.1007/s10803-006-0332-6.
Riddle, K., Cascio, C. J., & Woodward, N. D. (2017). Brain structure in autism: A voxel-based morphometry analysis of the autism brain imaging database exchange (ABIDE). Brain Imaging and Behavior, 11(2), 541-551. https://doi.org/10.1007/s11682-016-9534-5.
Riva, D., Annunziata, S., Contarino, V., Erbetta, A., Aquino, D., & Bulgheroni, S. (2013). Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: A VBM-DARTEL study. The Cerebellum, 12(5), 676-685. https://doi.org/10.1007/s12311-013-0469-8.
Rojas, D. C., Peterson, E., Winterrowd, E., Reite, M. L., Rogers, S. J., & Tregellas, J. R. (2006). Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry, 6(1), 56. https://doi.org/10.1186/1471-244X-6-56.
Sanders, J., Johnson, K. A., Garavan, H., Gill, M., & Gallagher, L. (2008). A review of neuropsychological and neuroimaging research in autistic spectrum disorders: Attention, inhibition and cognitive flexibility. Research in Autism Spectrum Disorders, 2(1), 1-16. https://doi.org/10.1016/j.rasd.2007.03.005.
Schmahmann, J. D. (2004). Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 16(3), 367-378.
Schmahmann, J. D. (2019). The cerebellum and cognition. Neuroscience Letters, 688, 62-75. https://doi.org/10.1016/j.neulet.2018.07.005.
Sears, L. L., Vest, C., Mohamed, S., Bailey, J., Ranson, B. J., & Piven, J. (1999). An MRI study of the basal ganglia in autism. Progress in Neuro-psychopharmacology & Biological Psychiatry, 23, 613-624. https://doi.org/10.1016/S0278-5846(99)00020-2.
Seng, G. J., Tseng, W. L., Chiu, Y. N., Tsai, W. C., Wu, Y. Y., & Gau, S. S. (2020). Executive functions in youths with autism spectrum disorder and their unaffected siblings. Psychological Medicine, 1-10, 2571-2580. https://doi.org/10.1017/s0033291720001075.
Shao, Y., Cuccaro, M. L., Hauser, E. R., Raiford, K. L., Menold, M. M., Wolpert, C. M., Ravan, S. A., Elston, L., Decena, K., Donnelly, S. L., Abramson, R. K., Wright, H. H., DeLong, G. R., Gillbert, J. R., & Pericak-Vance, M. A. (2003). Fine mapping of autistic disorder to chromosome 15q11-q13 by use of phenotypic subtypes. The American Journal of Human Genetics, 72(3), 539-548. https://doi.org/10.1086/367846.
Smith, A. B., Taylor, E., Brammer, M., & Rubia, K. (2004). Neural correlates of switching set as measured in fast, event-related functional magnetic resonance imaging. Human Brain Mapping, 21(4), 247-256. https://doi.org/10.1002/hbm.20007.
South, M., Ozonoff, S., & Mcmahon, W. M. (2007). The relationship between executive functioning, central coherence, and repetitive behaviors in the high-functioning autism spectrum. Autism, 11(5), 437-451. https://doi.org/10.1177/1362361307079606.
Stark, E., Stacey, J., Mandy, W., Kringelbach, M. L., & Happé, F. (2021). Autistic cognition: Charting routes to anxiety. Trends in Cognitive Sciences, 25, 571-581.
Strang, J. F., Anthony, L. G., Yerys, B. E., Hardy, K. K., Wallace, G. L., Armour, A. C., Dudley, K., & Kenworthy, L. (2017). The flexibility scale: Development and preliminary validation of a cognitive flexibility measure in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 47(8), 2502-2518. https://doi.org/10.1007/s10803-017-3152-y.
Szatmari, P., Georgiades, S., Bryson, S., Zwaigenbaum, L., Roberts, W., Mahoney, W., Goldberg, J., & Tuff, L. (2006). Investigating the structure of the restricted, repetitive behaviours and interests domain of autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 47(6), 582-590. https://doi.org/10.1111/j.1469-7610.2005.01537.x.
Traynor, J. M., & Hall, G. B. (2015). Structural and functional neuroimaging of restricted and repetitive behavior in autism spectrum disorder. Journal of Intellectual Disability-Diagnosis and Treatment, 3(1), 21-34.
Turner, M. (1997). Towards an executive dysfunction account of repetitive behaviour in autism. In Autism as an executive disorder (pp. 57-100). Oxford University Press.
Turner, M. (1999). Annotation: Repetitive behaviour in autism: A review of psychological research. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 40(6), 839-849. https://doi.org/10.1111/1469-7610.00502.
van Rooij, D., Anagnostou E., Arango C., Auzias G., Behrmann M., Busatto G. F., Calderoni S., Daly E., Deruelle C., Di Martino A., Dinstein I., Duran F. L. S., Durston S., Ecker C., Fair D., Fedor J., Fitzgerald J., Freitag C. M., Gallagher L., … Buitelaar J. K. (2018). Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group. American Journal of Psychiatry, 175(4), 359-369. https://doi.org/10.1176/appi.ajp.2017.17010100.
Wang, Y., Zhang, Y. B., Liu, L. L., Cui, J. F., Wang, J., Shum, D. H., van Amelsvoort, T., & Chan, R. C. (2017). A meta-analysis of working memory impairments in autism spectrum disorders. Neuropsychology Review, 27(1), 46-61. https://doi.org/10.1007/s11065-016-9336-y.
Watanabe, T., Lawson, R. P., Walldén, Y. S. E., & Rees, G. (2019). A neuroanatomical substrate linking perceptual stability to cognitive rigidity in autism. The Journal of Neuroscience, 39(33), 6540-6554. https://doi.org/10.1523/jneurosci.2831-18.2019.
Wilkes, B. J., & Lewis, M. H. (2018). The neural circuitry of restricted repetitive behavior: Magnetic resonance imaging in neurodevelopmental disorders and animal models. Neuroscience & Biobehavioral Reviews, 92, 152-171. https://doi.org/10.1016/j.neubiorev.2018.05.022.
Wolfers T., Floris D. L., Dinga R., van Rooij D., Isakoglou C., Kia S. M., Zabihi M., Llera A., Chowdanayaka R., Kumar V. J., Peng H., Laidi C., Batalle D., Dimitrova R., Charman T., Loth E., Lai M.-C., Jones E., Baumeister S., … Beckmann C. F. (2019). From pattern classification to stratification: towards conceptualizing the heterogeneity of Autism Spectrum Disorder. Neuroscience & Biobehavioral Reviews, 104, 240-254. https://doi.org/10.1016/j.neubiorev.2019.07.010.
Yerys, B. E., Wallace, G. L., Harrison, B., Celano, M. J., Giedd, J. N., & Kenworthy, L. E. (2009). Set-shifting in children with autism spectrum disorders: Reversal shifting deficits on the Intradimensional/extradimensional shift test correlate with repetitive behaviors. Autism, 13(5), 523-538. https://doi.org/10.1177/1362361309335716.
Zhu, J., Zhu, D.-M., Zhang, C., Wang, Y., Yang, Y., & Yu, Y. (2019). Quantitative prediction of individual cognitive flexibility using structural MRI. Brain Imaging and Behavior, 13(3), 781-788. https://doi.org/10.1007/s11682-018-9905-1.
معلومات مُعتمدة: GSB 171373 Canada CIHR
فهرسة مساهمة: Keywords: autism spectrum disorder; cognitive flexibility; gray matter volume; insistence on sameness; voxel-based morphometry
تواريخ الأحداث: Date Created: 20220502 Date Completed: 20220707 Latest Revision: 20220721
رمز التحديث: 20221213
DOI: 10.1002/aur.2732
PMID: 35491911
قاعدة البيانات: MEDLINE
الوصف
تدمد:1939-3806
DOI:10.1002/aur.2732