دورية أكاديمية

Determination of Multidirectional Pathways for Ligand Release from the Receptor: A New Approach Based on Differential Evolution.

التفاصيل البيبلوغرافية
العنوان: Determination of Multidirectional Pathways for Ligand Release from the Receptor: A New Approach Based on Differential Evolution.
المؤلفون: Nguyen HL; Life Science Lab, Institute for Computational Science and Technology, QuangTrung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam.; Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 740500, Vietnam.; Vietnam National University, Ho Chi Minh City 71300, Vietnam., Thai NQ; Life Science Lab, Institute for Computational Science and Technology, QuangTrung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam.; Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap 81100, Vietnam., Li MS; Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw 02-668, Poland.
المصدر: Journal of chemical theory and computation [J Chem Theory Comput] 2022 Jun 14; Vol. 18 (6), pp. 3860-3872. Date of Electronic Publication: 2022 May 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101232704 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1549-9626 (Electronic) Linking ISSN: 15499618 NLM ISO Abbreviation: J Chem Theory Comput Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, D.C. : American Chemical Society, c2005-
مواضيع طبية MeSH: Acetylcholinesterase*/chemistry , Camphor 5-Monooxygenase*/chemistry, Binding Sites ; Ligands ; Molecular Dynamics Simulation ; Protein Binding
مستخلص: Steered molecular dynamics (SMD) simulation is a powerful method in computer-aided drug design as it can be used to access the relative binding affinity with high precision but with low computational cost. The success of SMD depends on the choice of the direction along which the ligand is pulled from the receptor-binding site. In most simulations, the unidirectional pathway was used, but in some cases, this choice resulted in the ligand colliding with the complex surface of the exit tunnel. To overcome this difficulty, several variants of SMD with multidirectional pulling have been proposed, but they are not completely devoid of disadvantages. Here, we have proposed to determine the direction of pulling with a simple scoring function that minimizes the receptor-ligand interaction, and an optimization algorithm called differential evolution is used for energy minimization. The effectiveness of our protocol was demonstrated by finding expulsion pathways of Huperzine A and camphor from the binding site of Torpedo California acetylcholinesterase and P450cam proteins, respectively, and comparing them with the previous results obtained using memetic sampling and random acceleration molecular dynamics. In addition, by applying this protocol to a set of ligands bound with LSD1 (lysine specific demethylase 1), we obtained a much higher correlation between the work of pulling force and experimental data on the inhibition constant IC50 compared to that obtained using the unidirectional approach based on minimal steric hindrance.
References: Biochem Biophys Res Commun. 2009 Feb 6;379(2):494-8. (PMID: 19118521)
J Phys Chem B. 2017 Nov 22;121(46):10436-10442. (PMID: 29065265)
Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5361-6. (PMID: 11959989)
J Chem Phys. 2009 Apr 28;130(16):164906. (PMID: 19405629)
Science. 1996 Feb 16;271(5251):997-9. (PMID: 8584939)
Drug Discov Today. 2017 Jun;22(6):896-911. (PMID: 28412474)
Drug Discov Today. 2018 Jul;23(7):1396-1406. (PMID: 29574212)
J Phys Chem B. 2018 May 3;122(17):4693-4699. (PMID: 29630379)
J Comput Chem. 2004 Jul 15;25(9):1157-74. (PMID: 15116359)
J Chem Theory Comput. 2019 Nov 12;15(11):5829-5844. (PMID: 31593627)
Nat Commun. 2020 Jun 10;11(1):2918. (PMID: 32522984)
J Chem Inf Model. 2014 Nov 24;54(11):3124-36. (PMID: 25299731)
J Mol Graph Model. 1999 Feb;17(1):57-61. (PMID: 10660911)
Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4273-8. (PMID: 23440190)
J Am Chem Soc. 2010 Jun 2;132(21):7361-71. (PMID: 20462212)
J Am Chem Soc. 2017 Apr 5;139(13):4780-4788. (PMID: 28290199)
Chem Rev. 2020 Dec 9;120(23):12788-12833. (PMID: 33006893)
Annu Rev Phys Chem. 2019 Jun 14;70:143-171. (PMID: 30786217)
Biopolymers. 1999 Oct 5;50(4):347-59. (PMID: 10423544)
Biochim Biophys Acta. 2007 Mar;1770(3):390-401. (PMID: 16920266)
J Chem Phys. 2019 Jun 14;150(22):221101. (PMID: 31202231)
Curr Opin Struct Biol. 2020 Oct;64:126-133. (PMID: 32771530)
J Med Chem. 2013 Sep 12;56(17):7003-14. (PMID: 23927519)
J Chem Inf Model. 2010 Dec 27;50(12):2236-47. (PMID: 21090736)
J Comput Aided Mol Des. 2017 May;31(5):483-495. (PMID: 28342136)
Biochemistry. 2019 Jan 22;58(3):156-165. (PMID: 30547565)
Biophys Rev. 2017 Apr;9(2):91-102. (PMID: 28510083)
J Chem Inf Model. 2020 Nov 23;60(11):5340-5352. (PMID: 32315175)
J Phys Chem Lett. 2021 Jan 14;12(1):633-641. (PMID: 33382941)
Biochem Biophys Res Commun. 2011 Jul 8;410(3):688-91. (PMID: 21693105)
J Chem Theory Comput. 2019 May 14;15(5):3316-3330. (PMID: 30893556)
Sci Rep. 2015 Jun 23;5:11539. (PMID: 26103621)
Curr Opin Struct Biol. 2020 Apr;61:139-145. (PMID: 31972477)
PLoS Comput Biol. 2012;8(10):e1002708. (PMID: 23093919)
Biochem Biophys Res Commun. 2017 Jan 29;483(1):203-208. (PMID: 28034750)
J Chem Phys. 2020 Sep 28;153(12):125102. (PMID: 33003755)
J Chem Theory Comput. 2018 Jul 10;14(7):3859-3869. (PMID: 29768913)
J Chem Phys. 2020 Jul 28;153(4):044130. (PMID: 32752662)
Biochemistry. 2002 Sep 3;41(35):10810-8. (PMID: 12196020)
Med Res Rev. 2015 May;35(3):586-618. (PMID: 25418875)
J Chem Inf Model. 2018 May 29;58(5):968-981. (PMID: 29620886)
J Mol Biol. 1987 Jun 5;195(3):687-700. (PMID: 3656428)
Curr Opin Struct Biol. 2018 Apr;49:1-10. (PMID: 29132080)
Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2133-8. (PMID: 9122160)
BMC Res Notes. 2012 Jul 23;5:367. (PMID: 22824207)
J Comput Chem. 2002 Dec;23(16):1623-41. (PMID: 12395429)
J Phys Chem B. 2017 Apr 20;121(15):3597-3606. (PMID: 28191969)
Expert Opin Drug Discov. 2015 May;10(5):449-61. (PMID: 25835573)
Biophys J. 1995 Jun;68(6):2580-7. (PMID: 7647261)
J Chem Inf Model. 2018 Aug 27;58(8):1473-1482. (PMID: 29975531)
J Comput Chem. 2010 Jan 30;31(2):455-61. (PMID: 19499576)
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6594-6601. (PMID: 30890636)
Protein Sci. 2011 Jul;20(7):1114-8. (PMID: 21594947)
J Chem Theory Comput. 2011 Aug 9;7(8):2520-2527. (PMID: 21869866)
J Mol Biol. 2000 Nov 10;303(5):797-811. (PMID: 11061976)
J Chem Inf Model. 2019 Dec 23;59(12):5135-5147. (PMID: 31697501)
Protein Sci. 2013 Sep;22(9):1218-29. (PMID: 23832606)
Molecules. 2015 Oct 22;20(10):19236-51. (PMID: 26506335)
Front Mol Biosci. 2019 Sep 04;6:74. (PMID: 31552265)
Front Chem. 2019 Jan 08;6:650. (PMID: 30671430)
J Inorg Biochem. 2004 Jul;98(7):1175-82. (PMID: 15219983)
Phys Life Rev. 2017 Dec;22-23:58-74. (PMID: 28410930)
Curr Opin Struct Biol. 2020 Apr;61:213-221. (PMID: 32113133)
Nat Struct Mol Biol. 2007 Jun;14(6):535-9. (PMID: 17529991)
J Chem Theory Comput. 2015 Apr 14;11(4):1928-38. (PMID: 25937822)
J Chem Phys. 2015 Sep 28;143(12):124101. (PMID: 26428990)
J Chem Theory Comput. 2016 Apr 12;12(4):2110-20. (PMID: 26989997)
J Chem Theory Comput. 2018 Jun 12;14(6):2843-2851. (PMID: 29715428)
Curr Opin Chem Biol. 2018 Jun;44:101-109. (PMID: 29986213)
J Chem Inf Model. 2015 Dec 28;55(12):2731-8. (PMID: 26595261)
Biophys J. 1997 Dec;73(6):2972-9. (PMID: 9414212)
Science. 1994 Apr 15;264(5157):415-7. (PMID: 8153628)
J Phys Chem Lett. 2017 May 4;8(9):2036-2042. (PMID: 28423275)
Biophys J. 1997 Apr;72(4):1568-81. (PMID: 9083662)
Phys Rev Lett. 1986 Mar 3;56(9):930-933. (PMID: 10033323)
J Chem Theory Comput. 2019 Aug 13;15(8):4646-4659. (PMID: 31246463)
Anesth Analg. 2018 May;126(5):1763-1768. (PMID: 29481436)
J Chem Inf Model. 2014 Feb 24;54(2):470-80. (PMID: 24437446)
J Chem Phys. 2007 Jan 7;126(1):014101. (PMID: 17212484)
J Comput Chem. 2003 Dec;24(16):1999-2012. (PMID: 14531054)
Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6358-63. (PMID: 23553839)
J Cheminform. 2013 Aug 16;5(1):39. (PMID: 23953065)
J Comput Chem. 2012 Jan 15;33(2):119-33. (PMID: 21997754)
J Phys Chem Lett. 2020 Aug 6;11(15):6373-6381. (PMID: 32672983)
Proteins. 2010 Jun;78(8):1950-8. (PMID: 20408171)
J Chem Inf Model. 2012 Jun 25;52(6):1595-606. (PMID: 22621202)
J Biomol Struct Dyn. 2017 Nov;35(15):3221-3231. (PMID: 27771988)
المشرفين على المادة: 0 (Ligands)
EC 1.14.15.1 (Camphor 5-Monooxygenase)
EC 3.1.1.7 (Acetylcholinesterase)
تواريخ الأحداث: Date Created: 20220505 Date Completed: 20220615 Latest Revision: 20220716
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9202309
DOI: 10.1021/acs.jctc.1c01158
PMID: 35512104
قاعدة البيانات: MEDLINE
الوصف
تدمد:1549-9626
DOI:10.1021/acs.jctc.1c01158