دورية أكاديمية

Regulatory mechanisms behind the phenotypic plasticity associated with Setaria italica water deficit tolerance.

التفاصيل البيبلوغرافية
العنوان: Regulatory mechanisms behind the phenotypic plasticity associated with Setaria italica water deficit tolerance.
المؤلفون: Suguiyama VF; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil., Rodriguez JDP; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil., Dos Santos TCN; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil., Lira BS; Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil., de Haro LA; Departament of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel., Silva JPN; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil., Borba EL; Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil., Purgatto E; Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil., da Silva EA; Instituto de Botânica da Secretaria do Meio Ambiente do Estado de São Paulo, São Paulo, SP, Brazil., Bellora N; Institute of Nuclear Technologies for Health (Intecnus), National Scientific and Technical Research Council (CONICET), 8400, Bariloche, Argentina., Carrari F; Instituto de Agrobiotecnología Y Biología Molecular (IABIMO), CICVYA, INTA-CONICET, Hurlingham, Argentina.; Cátedra de Genética, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina., Centeno DDC; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil., Bermúdez LF; Instituto de Agrobiotecnología Y Biología Molecular (IABIMO), CICVYA, INTA-CONICET, Hurlingham, Argentina.; Cátedra de Genética, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina., Rossi M; Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil., de Setta N; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil. nathalia.setta@ufabc.edu.br.
المصدر: Plant molecular biology [Plant Mol Biol] 2022 Aug; Vol. 109 (6), pp. 761-780. Date of Electronic Publication: 2022 May 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Country of Publication: Netherlands NLM ID: 9106343 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-5028 (Electronic) Linking ISSN: 01674412 NLM ISO Abbreviation: Plant Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Dordrecht : Kluwer Academic
Original Publication: The Hague ; Boston : Martinus Nijhoff/Dr. W. Junk, 1981-
مواضيع طبية MeSH: RNA, Small Untranslated*/metabolism , Setaria Plant*/genetics, Adaptation, Physiological/genetics ; Droughts ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Stress, Physiological/genetics ; Water/metabolism
مستخلص: Drought is one of the main environmental stresses that negatively impacts vegetative and reproductive yield. Water deficit responses are determined by the duration and intensity of the stress, which, together with plant genotype, will define the chances of plant survival. The metabolic adjustments in response to water deficit are complex and involve gene expression modulation regulated by DNA-binding proteins and epigenetic modifications. This last mechanism may also regulate the activity of transposable elements, which in turn impact the expression of nearby loci. Setaria italica plants submitted to five water deficit regimes were analyzed through a phenotypical approach, including growth, physiological, RNA-seq and sRNA-seq analyses. The results showed a progressive reduction in yield as a function of water deficit intensity associated with signaling pathway modulation and metabolic adjustments. We identified a group of loci that were consistently associated with drought responses, some of which were related to water deficit perception, signaling and regulation. Finally, an analysis of the transcriptome and sRNAome allowed us to identify genes putatively regulated by TE- and sRNA-related mechanisms and an intriguing positive correlation between transcript levels and sRNA accumulation in gene body regions. These findings shed light on the processes that allow S. italica to overcome drought and survive under water restrictive conditions.
(© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Anders S, Pyl PT, Huber W (2015) HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. https://doi.org/10.1093/bioinformatics/btu638. (PMID: 10.1093/bioinformatics/btu63825260700)
Asghar MA, Li Y, Jiang H, Sun X, Ahmad B, Imran S, Yu L, Liu C, Yang W, Du J (2019) Crosstalk between abscisic acid and auxin under osmotic stress. Agron J 111:2157–2162. https://doi.org/10.2134/agronj2018.10.0633. (PMID: 10.2134/agronj2018.10.0633)
Aslam M, Zamir MSI, Anjum SA, Khan I, Tanveer M (2015) An investigation into morphological and physiological approaches to screen maize (Zea mays L.) hybrids for drought tolerance. Cereal Res Commun 43:41–51. https://doi.org/10.1556/CRC.2014.0022. (PMID: 10.1556/CRC.2014.0022)
Axtell MJ (2013) ShortStack: comprehensive annotation and quantification of small RNA genes. RNA 19:740–751. https://doi.org/10.1261/rna.035279.112. (PMID: 10.1261/rna.035279.112236101283683909)
Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000Research 5:1554. (PMID: 10.12688/f1000research.7678.1)
Batth R, Jain M, Kumar A, Nagar P, Kumari S, Mustafiz A (2020) Zn 2+ dependent glyoxalase i plays the major role in methylglyoxal detoxification and salinity stress tolerance in plants. PLoS One 15:1–14. https://doi.org/10.1371/journal.pone.0233493.
Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561. https://doi.org/10.1038/nbt.2196. (PMID: 10.1038/nbt.219622580951)
Blum A (2005) Drought resistance, water-use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168. https://doi.org/10.1071/AR05069. (PMID: 10.1071/AR05069)
Bolger AM, Lohse M, Usadel B (2014) Genome analysis Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170. (PMID: 10.1093/bioinformatics/btu170246954044103590)
Brkljacic J, Grotewold E (2017) Combinatorial control of plant gene expression. Biochim Biophys Acta 1860:31–40. https://doi.org/10.1016/j.bbagrm.2016.07.005. (PMID: 10.1016/j.bbagrm.2016.07.005)
Carmo-Silva AE, Powers SJ, Keys AJ, Arrabaça MC, Parry MAJ (2008) Photorespiration in C4 grasses remains slow under drought conditions. Plant, Cell Environ 31:925–940. https://doi.org/10.1111/j.1365-3040.2008.01805.x. (PMID: 10.1111/j.1365-3040.2008.01805.x)
Chang YN, Zhu C, Jiang J, Zhang H, Zhu JK, Duan CG (2020) Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol 62:563–580. https://doi.org/10.1111/jipb.12901. (PMID: 10.1111/jipb.1290131872527)
Chaudhary S, Jabre I, Reddy ASN, Staiger D, Syed NH (2019) Perspective on alternative splicing and proteome complexity in plants. Trends Plant Sci 24:496–506. https://doi.org/10.1016/j.tplants.2019.02.006. (PMID: 10.1016/j.tplants.2019.02.00630852095)
Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol 30:239–264. https://doi.org/10.1071/FP02076. (PMID: 10.1071/FP0207632689007)
Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X (2010) Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281. https://doi.org/10.1186/1471-2229-10-281. (PMID: 10.1186/1471-2229-10-281211670673023790)
Cho LH, Yoon J, An G (2017) The control of flowering time by environmental factors. Plant J 90:708–719. https://doi.org/10.1111/tpj.13461. (PMID: 10.1111/tpj.1346127995671)
Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2:e1501340. https://doi.org/10.1126/sciadv.1501340. (PMID: 10.1126/sciadv.1501340269897834788475)
Cuerda-Gil D, Slotkin RK (2016) Non-canonical RNA-directed DNA methylation. Nat Plants 2:16211. https://doi.org/10.1038/nplants.2016.163. (PMID: 10.1038/nplants.2016.163)
Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141. https://doi.org/10.1104/pp.108.129627. (PMID: 10.1104/pp.108.129627191267052613750)
Duarte KE, de Souza WR, Santiago TR, Sampaio BL, Ribeiro AP, Cotta MG, da Cunha BADB, Marraccini PRR, Kobayashi AK, Molinari HBC (2019) Identification and characterization of core abscisic acid (ABA) signaling components and their gene expression profile in response to abiotic stresses in Setaria viridis. Sci Rep 9:4028. https://doi.org/10.1038/s41598-019-40623-5. (PMID: 10.1038/s41598-019-40623-5308584916411973)
Fracasso A, Trindade LM, Amaducci S (2016) Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biol 16:115. https://doi.org/10.1186/s12870-016-0800-x. (PMID: 10.1186/s12870-016-0800-x272089774875703)
Gasber A, Klaumann S, Trentmann O, Trampczynska A, Clemens S, Schneider S, Sauer N, Feifer I, Bittner F, Mendel RR, Neuhaus HE (2011) Identification of an Arabidopsis solute carrier critical for intracellular transport and inter-organ allocation of molybdate. Plant Biol 13:710–718. https://doi.org/10.1111/j.1438-8677.2011.00448.x.
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80. https://doi.org/10.1186/gb-2004-5-10-r80. (PMID: 10.1186/gb-2004-5-10-r8015461798545600)
Hammer Ø, Harper DA, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9.
Hartmann H, Ziegler W, Trumbore S (2013) Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Funct Ecol 27:413–427. https://doi.org/10.1111/1365-2435.12046. (PMID: 10.1111/1365-2435.12046)
Hoang XLT, Nhi DNH, Thu NBA, Thao NP, Tran L-SP (2017) Transcription factors and their roles in signal transduction in plants under abiotic stresses. Curr Genomics 18:483–497. https://doi.org/10.2174/1389202918666170227150057. (PMID: 10.2174/1389202918666170227150057292040785684650)
Hung Y-H, Slotkin RK (2021) The initiation of RNA interference (RNAi) in plants. Curr Opin Plant Biol 61:102014. https://doi.org/10.1016/j.pbi.2021.102014. (PMID: 10.1016/j.pbi.2021.10201433657510)
Hwang K, Susila H, Nasim Z, Jung J-Y, Ahn JH (2019) Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Mol Plant 12:489–505. https://doi.org/10.1016/j.molp.2019.01.002. (PMID: 10.1016/j.molp.2019.01.00230639313)
Jia F, Wang C, Huang J, Yang G, Wu C, Zheng C (2015) SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis. J Exp Bot 66:4683–4697. https://doi.org/10.1093/jxb/erv245. (PMID: 10.1093/jxb/erv245260413214507775)
Kang D-J, Futakuchi K (2019) Effect of moderate drought-stress on flowering time of interspecific hybrid progenies (Oryza sativa L. × Oryza glaberrima Steud.). J Crop Sci Biotechnol 22:75–81. https://doi.org/10.1007/s12892-019-0015-0. (PMID: 10.1007/s12892-019-0015-0)
Kazan K, Lyons R (2016) The link between flowering time and stress tolerance. J Exp Bot 67:47–60. https://doi.org/10.1093/jxb/erv441. (PMID: 10.1093/jxb/erv44126428061)
Kim J-S, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K, Yamaguchi-Shinozaki K (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol 52:2136–2146. https://doi.org/10.1093/pcp/pcr143. (PMID: 10.1093/pcp/pcr14322025559)
Konopka-Postupolska D, Dobrowolska G (2020) ABA perception is modulated by membrane receptor-like kinases. J Exp Bot 71:1210–1214. https://doi.org/10.1093/jxb/erz531. (PMID: 10.1093/jxb/erz531320767297031077)
Lambret-Frotté J, De Almeida LCS, De Moura SM, Souza FLF, Linhares FS, Alves-Ferreira M (2015) Validating internal control genes for the accurate normalization of qPCR expression analysis of the novel model plant Setaria viridis. PLoS ONE 10:e0135006. https://doi.org/10.1371/journal.pone.0135006. (PMID: 10.1371/journal.pone.0135006262477844527663)
Lata C, Sahu PP, Prasad M (2010) Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochem Biophys Res Commun 393:720–727. https://doi.org/10.1016/j.bbrc.2010.02.068. (PMID: 10.1016/j.bbrc.2010.02.06820171162)
Laxa M, Liebthal M, Telman W, Chibani K, Dietz K-J (2019) The role of the plant antioxidant system in drought tolerance. Antioxidants 8:94. https://doi.org/10.3390/antiox8040094. (PMID: 10.3390/antiox80400946523806)
Li Q, Gent JI, Zynda G, Song J, Makarevitch I, Hirsch CD, Hirsch CN, Dawe RK, Madzima TF, McGinnis KM, Lisch D, Schmitz RJ, Vaughn MW, Springer NM (2015) RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. Proc Natl Acad Sci USA 112:14728–14733. https://doi.org/10.1073/pnas.1514680112. (PMID: 10.1073/pnas.1514680112265539844664327)
Lin CW, Huang LY, Huang CL, Wang YC, Lai PH, Wang HV, Chang WC, Chiang TY, Huang HJ (2017) Common stress transcriptome analysis reveals functional and genomic architecture differences between early and delayed response genes. Plant Cell Physiol 58:546–559. https://doi.org/10.1093/pcp/pcx002. (PMID: 10.1093/pcp/pcx00228115496)
Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66. https://doi.org/10.1146/annurev.arplant.59.032607.092744. (PMID: 10.1146/annurev.arplant.59.032607.09274419007329)
Liu W, Stewart CN (2016) Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 37:36–44. https://doi.org/10.1016/j.copbio.2015.10.001. (PMID: 10.1016/j.copbio.2015.10.00126524248)
Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, Tohge T, Fernie AR, Stitt M, Usadel B (2014) Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant, Cell Environ 37:1250–1258. https://doi.org/10.1111/pce.12231. (PMID: 10.1111/pce.12231)
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8. (PMID: 10.1186/s13059-014-0550-8255162814302049)
Lu X, Wang W, Ren W, Chai Z, Guo W, Chen R, Wang L, Zhao J, Lang Z, Fan Y, Zhao J, Zhang C (2015) Genome-wide epigenetic regulation of gene transcription in maize seeds. PLoS ONE 10:e0139582. https://doi.org/10.1371/journal.pone.0139582. (PMID: 10.1371/journal.pone.0139582264695204607434)
Luo F, Deng X, Liu Y, Yan Y (2018) Identification of phosphorylation proteins in response to water deficit during wheat flag leaf and grain development. Bot Stud 59:28. https://doi.org/10.1186/s40529-018-0245-7. (PMID: 10.1186/s40529-018-0245-7305358796286713)
Malefo MB, Mathibela EO, Crampton BG, Makgopa ME (2020) Investigating the role of Bowman-Birk serine protease inhibitor in Arabidopsis plants under drought stress. Plant Physiol Biochem 149:286–293. https://doi.org/10.1016/j.plaphy.2020.02.007.
Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408. https://doi.org/10.1038/nrg3683. (PMID: 10.1038/nrg368324805120)
McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, Christoffersen B, Davies S, Doughty C, Duque A, Espirito-Santo F, Fisher R, Fontes CG, Galbraith D, Goodsman D, Grossiord C, Hartmann H, Holm J, Johnson DJ, Kassim AR, Keller M, Koven C, Kueppers L, Kumagai T, Malhi Y, McMahon SM, Mencuccini M, Meir P, Moorcroft P, Muller-Landau HC, Phillips OL, Powell T, Sierra CA, Sperry J, Warren J, Xu C, Xu X (2018) Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol 219:851–869. https://doi.org/10.1111/nph.15027. (PMID: 10.1111/nph.1502729451313)
Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal. https://doi.org/10.1126/scisignal.2000448. (PMID: 10.1126/scisignal.2000448198876815096451)
Nagahage ISP, Sakamoto S, Nagano M, Ishikawa T, Mitsuda N, Kawai-Yamada M, Yamaguchi M (2020) An Arabidopsis NAC domain transcription factor, ATAF2, promotes age-dependent and dark-induced leaf senescence. Physiol Plant 170:299–308. https://doi.org/10.1111/ppl.13156.
Nematpour A, Eshghizadeh HR, Zahedi M (2019) Drought-tolerance mechanisms in foxtail millet (Setaria italica) and proso millet (Panicum miliaceum) under different nitrogen supply and sowing dates. Crop Pasture Sci 70:442–452. https://doi.org/10.1071/CP18501. (PMID: 10.1071/CP18501)
Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692. https://doi.org/10.1016/j.tplants.2010.09.008. (PMID: 10.1016/j.tplants.2010.09.00820970368)
Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. https://doi.org/10.1093/nar/30.9.e36. (PMID: 10.1093/nar/30.9.e3611972351113859)
Qi X, Xie S, Liu Y, Yi F, Yu J (2013) Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Mol Biol 83:459–473. https://doi.org/10.1007/s11103-013-0104-6. (PMID: 10.1007/s11103-013-0104-623860794)
Qin F, Sakuma Y, Tran L-SP, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K-I, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707. https://doi.org/10.1105/tpc.107.057380. (PMID: 10.1105/tpc.107.057380185522022483357)
Qin L, Chen E, Li F, Yu X, Liu Z, Yang Y, Wang R, Zhang H, Wang H, Liu B, Guan Y, Ruan Y (2020) Genome-wide gene expression profiles analysis reveal novel insights into drought stress in foxtail millet (Setaria italica L). Int J Mol Sci 21:8520. https://doi.org/10.3390/ijms21228520. (PMID: 10.3390/ijms212285207696101)
Quadrana L, Almeida J, Asís R, Duffy T, Dominguez PG, Bermúdez L, Conti G, da Silva JVC, Peralta IE, Colot V, Asurmendi S, Fernie AR, Rossi M, Carrari F (2014) Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5:4027. https://doi.org/10.1038/ncomms5027. (PMID: 10.1038/ncomms5027)
Rajala A, Hakala K, Mäkelä P, Peltonen-Sainio P (2011) Drought effect on grain number and grain weight at spike and spikelet level in six-row spring barley. J Agron Crop Sci 197:103–112. https://doi.org/10.1111/j.1439-037X.2010.00449.x. (PMID: 10.1111/j.1439-037X.2010.00449.x)
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616. (PMID: 10.1093/bioinformatics/btp61619910308)
Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den hoff MJB, Moorman AFM, (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45. https://doi.org/10.1093/nar/gkp045. (PMID: 10.1093/nar/gkp045192373962665230)
Seghatoleslami MJ, Kafi M, Majidi E (2008) Effect of deficit irrigation on yield, wue and some morphological and phenological traits of three millet species. Pakistan J Bot 40:1555–1560.
Shang Y, Yan L, Liu Z-Q, Cao Z, Mei C, Xin Q, Wu F-Q, Wang X-F, Du S-Y, Jiang T, Zhang X-F, Zhao R, Sun H-L, Liu R, Yu Y-T, Zhang D-P (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935. https://doi.org/10.1105/tpc.110.073874. (PMID: 10.1105/tpc.110.073874205430282910980)
Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, De Groot S, Soole K, Langridge P (2017) Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Front Plant Sci 8:1950. https://doi.org/10.3389/fpls.2017.01950. (PMID: 10.3389/fpls.2017.01950292041475698779)
Su Z, Ma X, Guo H, Sukiran NL, Guo B, Assmann SM, Ma H (2013) Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. Plant Cell 25:3785–3807. https://doi.org/10.1105/tpc.113.115428. (PMID: 10.1105/tpc.113.115428241791293877795)
Sudan J, Raina M, Singh R (2018) Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech 8:172. https://doi.org/10.1007/s13205-018-1202-6. (PMID: 10.1007/s13205-018-1202-6295564265845050)
Suguiyama VF, Silva EA, Meirelles ST, Centeno DC, Braga MR (2014) Leaf metabolite profile of the Brazilian resurrection plant Barbacenia purpurea Hook. (Velloziaceae) shows two time-dependent responses during desiccation and recovering. Front Plant Sci 5:96. https://doi.org/10.3389/fpls.2014.00096. (PMID: 10.3389/fpls.2014.00096246725343953666)
Suguiyama VF, Vasconcelos LAB, Rossi MM, Biondo C, de Setta N (2019) The population genetic structure approach adds new insights into the evolution of plant LTR retrotransposon lineages. PLoS ONE 14:e0214542. https://doi.org/10.1371/journal.pone.0214542. (PMID: 10.1371/journal.pone.0214542311078736527191)
Sun C, Gao X, Chen X, Fu J, Zhang Y (2016) Metabolic and growth responses of maize to successive drought and re-watering cycles. Agric Water Manag 172:62–73. https://doi.org/10.1016/j.agwat.2016.04.016. (PMID: 10.1016/j.agwat.2016.04.016)
Takahashi F, Kuromori T, Sato H, Shinozaki K (2018) Regulatory gene networks in drought stress responses and resistance in plants. In: Iwaya-Inoue M, Sakurai M, Uemura M (eds) Survival Strategies in Extreme Cold and Desiccation, 1st edn. Springer, Singapore, pp 189–214. (PMID: 10.1007/978-981-13-1244-1_11)
Tang S, Li L, Wang Y, Chen Q, Zhang W, Jia G, Zhi H, Zhao B, Diao X (2017) Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). Sci Rep 7:10009. https://doi.org/10.1038/s41598-017-08854-6. (PMID: 10.1038/s41598-017-08854-6288555205577110)
Tardieu F, Parent B, Caldeira CF, Welcker C (2014) Genetic and physiological controls of growth under water deficit. Plant Physiol 164:1628–1635. https://doi.org/10.1104/pp.113.233353. (PMID: 10.1104/pp.113.233353245698463982729)
Upadhyay A, Gaonkar T, Upadhyay AK, Jogaiah S, Shinde MP, Kadoo NY, Gupta VS (2018) Global transcriptome analysis of grapevine (Vitis vinifera L) leaves under salt stress reveals differential response at early and late stages of stress in table grape cv. Elsevier Masson, Les Collectionneurs. (PMID: 10.1016/j.plaphy.2018.05.032)
Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M (2009) A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant, Cell Environ 32:1211–1229. https://doi.org/10.1111/j.1365-3040.2009.01978.x. (PMID: 10.1111/j.1365-3040.2009.01978.x)
Vahisalu T, Kollist H, Wang Y-F, Nishimura N, Chan W-Y, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder JI, Kangasjarvi J (2008) SLAC1 is required for plant guard cell S-type anion channel. Nature 452:487–491. https://doi.org/10.1038/nature06608.SLAC1. (PMID: 10.1038/nature06608.SLAC1183054842858982)
Weatherley PE (1950) Studies in the water relations of the cotton plant. New Phytol 49:81–97. (PMID: 10.1111/j.1469-8137.1950.tb05146.x)
Wu TD, Reeder J, Lawrence M, Becker G, Brauer MJ (2016) GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality. In: Mathé E, Davis S (eds) Statistical Genomics: Methods and Protocolos, 1st edn. Springer Science and Business Media, New York, pp 283–334. (PMID: 10.1007/978-1-4939-3578-9_15)
Wu H, Li B, Iwakawa H, Pan Y, Tang X, Ling-hu Q, Liu Y, Sheng S, Feng L, Zhang H, Zhang X, Tang Z, Xia X, Zhai J, Guo H (2020) Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature 581:89–93. https://doi.org/10.1038/s41586-020-2231-y. (PMID: 10.1038/s41586-020-2231-y32376953)
Xiong L, Zhu J-K (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36. https://doi.org/10.1104/pp.103.025395. (PMID: 10.1104/pp.103.02539512970472523868)
Xu B, Li F, Shan L, Ma Y, Ichizen N, Huang J (2006) Gas exchange, biomass partition, and water relationships of three grass seedlings under water stress. Weed Biol Manag 6:79–88. https://doi.org/10.1111/j.1445-6664.2006.00197.x. (PMID: 10.1111/j.1445-6664.2006.00197.x)
Yan KM, Chang T, Soon SA, Huang FY (2009) Purification and characterization of bowman-birk protease inhibitor from rice coleoptiles. J Chinese Chem Soc 56:949–960. https://doi.org/10.1002/jccs.200900139.
Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x. (PMID: 10.1111/j.1365-3180.1974.tb01084.x)
Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JRR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201. https://doi.org/10.1016/j.cell.2006.08.003. (PMID: 10.1016/j.cell.2006.08.00316949657)
Zhang FP, Sussmilch F, Nichols DS, Cardoso AA, Brodribb TJ, McAdam SAM (2018) Leaves, not roots or floral tissue, are the main site of rapid, external pressure-induced ABA biosynthesis in angiosperms. J Exp Bot 69:1261–1267. https://doi.org/10.1093/jxb/erx480. (PMID: 10.1093/jxb/erx480293406066018962)
معلومات مُعتمدة: 2012/23838-7 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2015/16975-6 Fundação de Amparo à Pesquisa do Estado de São Paulo; Scholarship Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
فهرسة مساهمة: Keywords: Monocots; Plant metabolism; SRNAs; Transcriptome; Transposable elements
المشرفين على المادة: 0 (RNA, Small Untranslated)
059QF0KO0R (Water)
تواريخ الأحداث: Date Created: 20220507 Date Completed: 20220729 Latest Revision: 20220729
رمز التحديث: 20221213
DOI: 10.1007/s11103-022-01273-w
PMID: 35524936
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-5028
DOI:10.1007/s11103-022-01273-w