دورية أكاديمية

Riverscape genomics of cichlid fishes in the lower Congo: Uncovering mechanisms of diversification in an extreme hydrological regime.

التفاصيل البيبلوغرافية
العنوان: Riverscape genomics of cichlid fishes in the lower Congo: Uncovering mechanisms of diversification in an extreme hydrological regime.
المؤلفون: Kurata NP; The Graduate Center of the City University of New York, New York, New York, USA.; Department of Ichthyology, American Museum of Natural History, New York, New York, USA., Hickerson MJ; The Graduate Center of the City University of New York, New York, New York, USA.; The City College of New York, New York, New York, USA.; Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA., Hoffberg SL; Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA., Gardiner N; Department of Geography, University of Georgia, Athens, Georgia, USA., Stiassny MLJ; Department of Ichthyology, American Museum of Natural History, New York, New York, USA.; The Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA., Alter SE; Department of Ichthyology, American Museum of Natural History, New York, New York, USA.; Department of Biology and Chemistry, California State University Monterey Bay, Seaside, California, USA.
المصدر: Molecular ecology [Mol Ecol] 2022 Jul; Vol. 31 (13), pp. 3516-3532. Date of Electronic Publication: 2022 May 22.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 9214478 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-294X (Electronic) Linking ISSN: 09621083 NLM ISO Abbreviation: Mol Ecol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Blackwell Scientific Publications, c1992-
مواضيع طبية MeSH: Cichlids*/genetics, Animals ; Congo ; Fishes ; Gene Flow ; Genomics ; Phylogeny
مستخلص: Freshwater fishes are notably diverse, given that freshwater habitat represents a tiny fraction of the earth's surface, but the mechanisms generating this diversity remain poorly understood. Rivers provide excellent models to understand how freshwater diversity is generated and maintained across heterogeneous habitats. In particular, the lower Congo River (LCR) consists of a dynamic hydroscape exhibiting extraordinary aquatic biodiversity, endemicity, morphological and ecological specialization. Previous studies have suggested that the numerous high-energy rapids throughout the LCR form physical barriers to gene flow, thus facilitating diversification and speciation, generating ichthyofaunal diversity. However, this hypothesis has not been fully explored using genome-wide SNPs for fish species distributed across the LCR. Here, we examined four lamprologine cichlids endemic to the LCR that are distributed along the river without range overlap. Using genome-wide SNP data, we tested the hypotheses that high-energy rapids serve as physical barriers to gene flow that generate genetic divergence at interspecific and intraspecific levels, and that gene flow occurs primarily in a downstream direction. Our results are consistent with the prediction that powerful rapids sometimes act as a barrier to gene flow but also suggest that, at certain temporal and spatial scales, they may provide multidirectional dispersal opportunities for riverine rheophilic cichlid fishes. These results highlight the complexity of diversification processes in rivers and the importance of assessing such processes across different riverscapes.
(© 2022 John Wiley & Sons Ltd.)
References: Aardema, M. L., Stiassny, M. L. J., & Alter, S. E. (2020). Genomic analysis of the only blind cichlid reveals extensive inactivation in eye and pigment formation genes. Genome Biology and Evolution, 12(8), 1392-1406. https://doi.org/10.1093/gbe/evaa144.
Alsdorf, D., Beighley, E., Laraque, A., Lee, H., Tshimanga, R., O’Loughlin, F., Mahé, G., Dinga, B., Moukandi, G., & Spencer, R. G. M. (2016). Opportunities for hydrologic research in the Congo Basin. Reviews of Geophysics, 54(2), 378-409. https://doi.org/10.1002/2016RG000517.
Alter, S. E., Brown, B., & Stiassny, M. L. J. (2015). Molecular phylogenetics reveals convergent evolution in lower Congo River spiny eels. BMC Evolutionary Biology, 15, 224. https://doi.org/10.1186/s12862-015-0507-x.
Alter, S. E., Munshi-South, J., & Stiassny, M. L. J. (2017). Genomewide SNP data reveal cryptic phylogeographic structure and microallopatric divergence in a rapids-adapted clade of cichlids from the Congo River. Molecular Ecology, 26(5), 1401-1419. https://doi.org/10.1111/mec.13973.
Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 17(2), 81-92. https://doi.org/10.1038/nrg.2015.28.
Barluenga, M., Stölting, K. N., Salzburger, W., Muschick, M., & Meyer, A. (2006). Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature, 439, 719-723. https://doi.org/10.1038/nature04325.
Bayona-Vásquez, N. J., Glenn, T. C., Kieran, T. J., Pierson, T. W., Hoffberg, S. L., Scott, P. A., Bentley, K. E., Finger, J. W., Louha, S., Troendle, N., Diaz-Jaimes, P., Mauricio, R., & Faircloth, B. C. (2019). Adapterama III: Quadruple-indexed, double/triple-enzyme RADseq libraries (2RAD/3RAD). PeerJ, 7, e7724. https://doi.org/10.7717/peerj.7724.
Bertola, L. D., Boehm, J. T., Putman, N. F., Xue, A. T., Robinson, J. D., Harris, S., Baldwin, C. C., Overcast, I., & Hickerson, M. J. (2020). Asymmetrical gene flow in five co-distributed syngnathids explained by ocean currents and rafting propensity. Proceedings of the Royal Society B: Biological Sciences, 287(1926), 20200657. https://doi.org/10.1098/rspb.2020.0657.
Boschman, L. M., Cassemiro, F. A. S., Carraro, L., de Vries, J., Altermatt, F., Hagen, O., Hoorn, C., & Pellissier, L. (2021). South American freshwater fish diversity shaped by Andean uplift since the Late Cretaceous. BioRxiv. https://doi.org/10.1101/2021.05.14.444133.
Boucher, F. C., Zimmermann, N. E., & Conti, E. (2016). Allopatric speciation with little niche divergence is common among alpine Primulaceae. Journal of Biogeography, 43(3), 591-602. https://doi.org/10.1111/jbi.12652.
Bowen, B. W., Rocha, L. A., Toonen, R. J., & Karl, S. A. (2013). The origins of tropical marine biodiversity. Trends in Ecology & Evolution, 28(6), 359-366. https://doi.org/10.1016/j.tree.2013.01.018.
Bradburd, G. S., Coop, G. M., & Ralph, P. L. (2018). Inferring continuous and discrete population genetic structure across space. Genetics, 210(1), 33-52. https://doi.org/10.1534/genetics.118.301333.
Brauer, C. J., Unmack, P. J., Smith, S., Bernatchez, L., & Beheregaray, L. B. (2018). On the roles of landscape heterogeneity and environmental variation in determining population genomic structure in a dendritic system. Molecular Ecology, 27(17), 3484-3497. https://doi.org/10.1111/mec.14808.
Burress, E. D., Alda, F., Duarte, A., Loureiro, M., Armbruster, J. W., & Chakrabarty, P. (2018). Phylogenomics of pike cichlids (Cichlidae: Crenicichla): the rapid ecological speciation of an incipient species flock. Journal of Evolutionary Biology, 31(1), 14-30. https://doi.org/10.1111/jeb.13196.
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: An analysis tool set for population genomics. Molecular Ecology, 22(11), 3124-3140. https://doi.org/10.1111/mec.12354.
Cohen, D. M. (1970). How many recent fishes are there? Proceedings of the California Academy of Sciences, 17, 341-346.
Cook, B. D., Kennard, M. J., Real, K., Pusey, B. J., & Hughes, J. M. (2011). Landscape genetic analysis of the tropical freshwater fish Mogurnda mogurnda (Eleotridae) in a monsoonal river basin: Importance of hydrographic factors and population history. Freshwater Biology, 56(5), 812-827. https://doi.org/10.1111/j.1365-2427.2010.02527.x.
Cowen, R. K., & Sponaugle, S. (2009). Larval dispersal and marine population connectivity. Annual Review of Marine Science, 1, 443-466. https://doi.org/10.1146/annurev.marine.010908.163757.
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & Durbin, R. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. https://doi.org/10.1093/bioinformatics/btr330.
Dawson, M. (2012). Species richness, habitable volume, and species densities in freshwater, the sea, and on land. Frontiers of Biogeography, 4, 105-116. https://doi.org/10.21425/F54312675.
Dias, M. S., Cornu, J.-F., Oberdorff, T., Lasso, C. A., & Tedesco, P. A. (2013). Natural fragmentation in river networks as a driver of speciation for freshwater fishes. Ecography, 36(6), 683-689. https://doi.org/10.1111/j.1600-0587.2012.07724.x.
Dionne, M., Caron, F., Dodson, J. J., & Bernatchez, L. (2008). Landscape genetics and hierarchical genetic structure in Atlantic salmon: The interaction of gene flow and local adaptation. Molecular Ecology, 17(10), 2382-2396. https://doi.org/10.1111/j.1365-294X.2008.03771.x.
Eaton, D. A. R., & Overcast, I. (2020). ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics, 36(8), 2592-2594. https://doi.org/10.1093/bioinformatics/btz966.
Elmer, K. R., Fan, S., Kusche, H., Luise Spreitzer, M., Kautt, A. F., Franchini, P., & Meyer, A. (2014). Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nature Communications, 5, 5168. https://doi.org/10.1038/ncomms6168.
Ford, A. G. P., Bullen, T. R., Pang, L., Genner, M. J., Bills, R., Flouri, T., Ngatunga, B. P., Rüber, L., Schliewen, U. K., Seehausen, O., Shechonge, A., Stiassny, M. L. J., Turner, G. F., & Day, J. J. (2019). Molecular phylogeny of Oreochromis (Cichlidae: Oreochromini) reveals mito-nuclear discordance and multiple colonisation of adverse aquatic environments. Molecular Phylogenetics and Evolution, 136, 215-226. https://doi.org/10.1016/j.ympev.2019.04.008.
Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6(8), 925-929. https://doi.org/10.1111/2041-210X.12382.
Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O. (2014). Fast and efficient estimation of individual ancestry coefficients. Genetics, 196(4), 973-983. https://doi.org/10.1534/genetics.113.160572.
Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G., & Siepel, A. (2011). Bayesian inference of ancient human demography from individual genome sequences. Nature Genetics, 43(10), 1031-1034. https://doi.org/10.1038/ng.937.
Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. https://doi.org/10.1093/sysbio/syq010.
Hansen, M. M., Limborg, M. T., Ferchaud, A. L., & Pujolar, J. M. (2014). The effects of Medieval dams on genetic divergence and demographic history in brown trout populations. BMC Evolutionary Biology, 14, 122. https://doi.org/10.1186/1471-2148-14-122.
Harrison, I. J., Brummett, R., & Stiassny, M. L. J. (2016). The Congo River Basin. In C. M. Finlayson, G. R. Milton, R. C. Prentice, & N. C. Davidson (Eds.), The Wetland book: II: Distribution, description and conservation (pp. 1-18). Springer Netherlands. https://doi.org/10.1007/978-94-007-6173-5_92-1.
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2), 518-522. https://doi.org/10.1093/molbev/msx281.
Hoffberg, S. L., Kieran, T. J., Catchen, J. M., Devault, A., Faircloth, B. C., Mauricio, R., & Glenn, T. C. (2016). RADcap: Sequence capture of dual-digest RADseq libraries with identifiable duplicates and reduced missing data. Molecular Ecology Resources, 16(5), 1264-1278. https://doi.org/10.1111/1755-0998.12566.
Horn, M. H. (1972). The amount of space available for marine and freshwater fishes. Fishery Bulletin, 70, 1295-1297.
Jackson, P. R., Oberg, K. A., Gardiner, N., & Shelton, J. (2009). Velocity mapping in the lower Congo River: A first look at the unique bathymetry and hydrodynamics of Bulu Reach, West Central Africa. In: Proceedings of the International Association for Hydraulic Research Congress.
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587-589. https://doi.org/10.1038/nmeth.4285.
Kanno, Y., Vokoun, J. C., & Letcher, B. H. (2011). Fine-scale population structure and riverscape genetics of brook trout (Salvelinus f ontinalis) distributed continuously along headwater channel networks. Molecular Ecology, 20(18), 3711-3729. https://doi.org/10.1111/j.1365-294X.2011.05210.x.
Kautt, A. F., Machado-Schiaffino, G., & Meyer, A. (2016). Multispecies outcomes of sympatric speciation after admixture with the source population in two radiations of Nicaraguan crater lake cichlids. PLOS Genetics, 12(6), e1006157. https://doi.org/10.1371/journal.pgen.1006157.
Kling, M. M., & Ackerly, D. D. (2021). Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees. Proceedings of the National Academy of Sciences, 118(17), e2017317118. https://doi.org/10.1073/pnas.2017317118.
Knowlton, N., & Weigt, L. A. (1998). New dates and new rates for divergence across the Isthmus of Panama. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1412), 2257-2263. https://doi.org/10.1098/rspb.1998.0568.
Kocher, T. D. (2004). Adaptive evolution and explosive speciation: The cichlid fish model. Nature Reviews Genetics, 5, 288-298. https://doi.org/10.1038/nrg1316.
Lepais, O., & Weir, J. T. (2014). SimRAD: An R package for simulation-based prediction of the number of loci expected in RADseq and similar genotyping by sequencing approaches. Molecular Ecology Resources, 14(6), 1314-1321. https://doi.org/10.1111/1755-0998.12273.
Lévêque, C., Oberdorff, T., Paugy, D., Stiassny, M. L. J., & Tedesco, P. A. (2008). Global diversity of fish (Pisces) in freshwater. Hydrobiologia, 595(1), 545-567. https://doi.org/10.1007/s10750-007-9034-0.
Levin, B. A., Simonov, E., Dgebuadze, Y. Y., Levina, M., & Golubtsov, A. S. (2020). In the rivers: Multiple adaptive radiations of cyprinid fishes (Labeobarbus) in Ethiopian Highlands. Scientific Reports, 10, 7192. https://doi.org/10.1038/s41598-020-64350-4.
Lowenstein, J. H., Osmundson, T. W., Becker, S., Hanner, R., & Stiassny, M. L. J. (2011). Incorporating DNA barcodes into a multi-year inventory of the fishes of the hyperdiverse Lower Congo River, with a multi-gene performance assessment of the genus Labeo as a case study. Mitochondrial DNA, 22(S1), 52-70. https://doi.org/10.3109/19401736.2010.537748.
Lujan, N. K., Weir, J. T., Noonan, B. P., Lovejoy, N. R., & Mandrak, N. E. (2020). Is Niagara Falls a barrier to gene flow in riverine fishes? A test using genome-wide SNP data from seven native species. Molecular Ecology, 29(7), 1235-1249. https://doi.org/10.1111/mec.15406.
Lundberg, J. G., Kottelat, M., Smith, G. R., Stiassny, M. L. J., & Gill, A. C. (2000). So many fishes, so little time: An overview of recent ichthyological discovery in continental waters. Annals of the Missouri Botanical Garden, 87(1), 26-62. https://doi.org/10.2307/2666207.
Luu, K., Bazin, E., & Blum, M. G. B. (2017). pcadapt: An R package to perform genome scans for selection based on principal component analysis. Molecular Ecology Resources, 17(1), 67-77. https://doi.org/10.1111/1755-0998.12592.
Malinsky, M., Challis, R. J., Tyers, A. M., Schiffels, S., Terai, Y., Ngatunga, B. P., Miska, E. A., Durbin, R., Genner, M. J., & Turner, G. F. (2015). Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science (New York, N.Y.), 350(6267), 1493-1498. https://doi.org/10.1126/science.aac9927.
Markert, J. A., Schelly, R. C., & Stiassny, M. L. (2010). Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids. BMC Evolutionary Biology, 10, 149. https://doi.org/10.1186/1471-2148-10-149.
Maruyama, T. (1969). Genetic correlation in the stepping stone model with non-symmetrical migration rates. Journal of Applied Probability, 6(3), 463-477. https://doi.org/10.2307/3212095.
Miller, E. C. (2021). Comparing diversification rates in lakes, rivers, and the sea. Evolution, 75(8), 2055-2073. https://doi.org/10.1111/evo.14295.
Minh, B. Q., Nguyen, M. A. T., & von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5), 1188-1195. https://doi.org/10.1093/molbev/mst024.
Morrissey, M. B., & de Kerckhove, D. T. (2009). The maintenance of genetic variation due to asymmetric gene flow in dendritic metapopulations. The American Naturalist, 174(6), 875-889. https://doi.org/10.1086/648311.
Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268-274. https://doi.org/10.1093/molbev/msu300.
Oberg, K., Shelton, J. M., Gardiner, N., & Jackson, P. R. (2008). Discharge and other hydraulic measurements for characterizing the hydraulics of lower Congo River. In: Proceedings of the International Association for Hydraulic Research Congress.
Ochoa, L. E., Pereira, L. H. G., Costa-Silva, G. J., Roxo, F. F., Batista, J. S., Formiga, K., Foresti, F., & Oliveira, C. (2015). Genetic structure and historical diversification of catfish Brachyplatystoma platynemum (Siluriformes: Pimelodidae) in the Amazon basin with implications for its conservation. Ecology and Evolution, 5(10), 2005-2020. https://doi.org/10.1002/ece3.1486.
Petkova, D., Novembre, J., & Stephens, M. (2016). Visualizing spatial population structure with estimated effective migration surfaces. Nature Genetics, 48, 94-100. https://doi.org/10.1038/ng.3464.
Poelstra, J. W., Richards, E. J., & Martin, C. H. (2018). Speciation in sympatry with ongoing secondary gene flow and a potential olfactory trigger in a radiation of Cameroon cichlids. Molecular Ecology, 27(21), 4270-4288. https://doi.org/10.1111/mec.14784.
Pringle, J. M., Blakeslee, A. M. H., Byers, J. E., & Roman, J. (2011). Asymmetric dispersal allows an upstream region to control population structure throughout a species’ range. Proceedings of the National Academy of Sciences, 108(37), 15288-15293. https://doi.org/10.1073/pnas.1100473108.
'Puckett, E. (2018). Making conStruct input files. Retrieved from: https://puckettresearch.org/2018/05/02/making-construct-input-files/.
Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). Tracer 1.6. Retrieved from: http://beast.bio.ed.ac.uk/Tracer.
Ridgeway, J. (2016). Object-oriented approaches to mapping channel habitat on the lower Congo River. Doctoral dissertation, University of Georgia.
Robert, M. (1946). Le Congo physique (3rd ed.). Presse Universitaires de France, Liège.
Roberts, T. R., & Stewart, D. J. (1976). An ecological and systematic survey of fishes in the rapids of the lower Zaire or Congo River. Bulletin of the Museum of Comparative Zoology, 147(6), 239-317.
Rocha, L. A., & Bowen, B. W. (2008). Speciation in coral-reef fishes. Journal of Fish Biology, 72(5), 1101-1121. https://doi.org/10.1111/j.1095-8649.2007.01770.x.
Runge, J. (2007). The Congo River, Central Africa. In A. Gupta (Ed.), Large rivers: Geomorphology and management (pp. 293-309). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470723722.ch14.
Salzburger, W. (2018). Understanding explosive diversification through cichlid fish genomics. Nature Reviews Genetics, 19, 705-717. https://doi.org/10.1038/s41576-018-0043-9.
Samarasin, P., Shuter, B. J., & Rodd, F. H. (2017). After 100 years: Hydroelectric dam-induced life-history divergence and population genetic changes in sockeye salmon (Oncorhynchus nerka). Conservation Genetics, 18, 1449-1462. https://doi.org/10.1007/s10592-017-0992-0.
Santos, M. E., & Salzburger, W. (2012). How cichlids diversify. Science, 338(6107), 619-621. https://doi.org/10.1126/science.1224818.
Schelly, R. C., & Stiassny, M. L. J. (2004). Revision of the Congo River Lamprologus Schilthuis, 1891 (Teleostei: Cichlidae), with descriptions of two new species. American Museum Novitates, 3451, 40. https://doi.org/10.1206/0003-0082(2004)451<0001:ROTCRL>2.0.CO;2.
Schobert, C. S., Stiassny, M. L. J., Schwab, I. R., Zeiss, C., Schelly, R. C., & Dubielzig, R. R. (2013). Comparative ocular anatomy in a blind African cichlid fish, Lamprologus lethops. Veterinary Ophthalmology, 16(5), 359-364. https://doi.org/10.1111/vop.12006.
Schwarzer, J., Misof, B., Ifuta, S. N., & Schliewen, U. K. (2011). Time and origin of cichlid colonization of the lower Congo rapids. PLoS One, 6(7), e22380. https://doi.org/10.1371/journal.pone.0022380.
Stiassny, M. (1997). A phylogenetic overview of the lamprologine cichlids of Africa (Teleostei, Cichlidae): A morphological perspective. South African Journal of Science, 93, 513-523.
Stiassny, M. L. J., & Alter, S. E. (2021). Evolution in the fast lane: Diversity, ecology, and speciation of cichlids in the lower Congo River. In M. E. Abate, & D. L. G. Noakes (Eds.), The behavior, ecology and evolution of cichlid fishes (pp. 107-133). https://doi.org/10.1007/978-94-024-2080-7&#95;4.
Sullivan, J. P., Lavoué, S., & Hopkins, C. D. (2002). Discovery and phylogenetic analysis of a riverine species flock of African electric fishes (Mormyridae: Teleostei). Evolution, 56(3), 597-616. https://doi.org/10.1111/j.0014-3820.2002.tb01370.x.
Svardal, H., Salzburger, W., & Malinsky, M. (2021). Genetic variation and hybridization in evolutionary radiations of cichlid fishes. Annual Review of Animal Biosciences, 9, 55-79. https://doi.org/10.1146/annurev-animal-061220-023129.
Tajima, F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics, 105(2), 437-460. https://doi.org/10.1093/genetics/105.2.437.
Tedesco, P. A., Paradis, E., Lévêque, C., & Hugueny, B. (2017). Explaining global-scale diversification patterns in actinopterygian fishes. Journal of Biogeography, 44(4), 773-783. https://doi.org/10.1111/jbi.12905.
Thomaz, A. T., Christie, M. R., & Knowles, L. L. (2016). The architecture of river networks can drive the evolutionary dynamics of aquatic populations. Evolution, 70(3), 731-739. https://doi.org/10.1111/evo.12883.
Tin, M. M. Y., Rheindt, F. E., Cros, E., & Mikheyev, A. S. (2015). Degenerate adaptor sequences for detecting PCR duplicates in reduced representation sequencing data improve genotype calling accuracy. Molecular Ecology Resources, 15(2), 329-336. https://doi.org/10.1111/1755-0998.12314.
Tishechkin, D. Y. (2020). The role of sympatric and allopatric speciation in the origin of biodiversity of herbivorous insects, with palaearctic Species of the Genus Macropsis Lewis, 1836 taken as an example (Homoptera, Auchenorrhyncha, Cicadellidae, Eurymelinae, Macropsini). Entomological Review, 100(8), 1039-1064. https://doi.org/10.1134/S0013873820080011.
Tobler, M., DeWitt, T. J., Schlupp, I., García de León, F. J., Herrmann, R., Feulner, P. G. D., Tiedemann, R., & Plath, M. (2008). Toxic hydrogen sulfide and dark caves: Phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana. Evolution, 62(10), 2643-2659. https://doi.org/10.1111/j.1558-5646.2008.00466.x.
Tornabene, L., Valdez, S., Erdmann, M., & Pezold, F. (2015). Support for a ‘Center of Origin’ in the Coral Triangle: Cryptic diversity, recent speciation, and local endemism in a diverse lineage of reef fishes (Gobiidae: Eviota). Molecular Phylogenetics and Evolution, 82, 200-210. https://doi.org/10.1016/j.ympev.2014.09.012.
Torterotot, J. B., Perrier, C., Bergeron, N. E., & Bernatchez, L. (2014). Influence of forest road culverts and waterfalls on the fine-scale distribution of brook trout genetic diversity in a boreal watershed. Transactions of the American Fisheries Society, 143(6), 1577-1591. https://doi.org/10.1080/00028487.2014.952449.
Tougas, S., & Stiassny, M. L. J. (2014). Lamprologus markerti, a new lamprologine cichlid (Teleostei: Cichlidae) endemic to the lower Congo River in the Democratic Republic of Congo, west-central Africa. Zootaxa, 3852(3), 391-400. https://doi.org/10.11646/zootaxa.3852.3.8.
Tripp, E. A., Tsai, Y. E., Zhuang, Y., & Dexter, K. G. (2017). RADseq dataset with 90% missing data fully resolves recent radiation of Petalidium (Acanthaceae) in the ultra-arid deserts of Namibia. Ecology and Evolution, 7(19), 7920-7936. https://doi.org/10.1002/ece3.3274.
Vavrek, M. J. (2011). Fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontologia Electronica, 14(1), 16.
Vega-Retter, C., Muñoz-Rojas, P., Rojas-Hernández, N., Copaja, S., Flores-Prado, L., & Véliz, D. (2020). Dammed river: Short- and long-term consequences for fish species inhabiting a river in a Mediterranean climate in central Chile. Aquatic Conservation: Marine and Freshwater Ecosystems, 30(12), 2254-2268. https://doi.org/10.1002/aqc.3425.
Washburn, B. A., Cashner, M. F., & Blanton, R. E. (2020). Small fish, large river: Surprisingly minimal genetic structure in a dispersal-limited, habitat specialist fish. Ecology and Evolution, 10(4), 2253-2268. https://doi.org/10.1002/ece3.6064.
Winker, K. (2021). An overview of speciation and species limits in birds. Ornithology, 138(2), 1-27. https://doi.org/10.1093/ornithology/ukab006.
Wright, S. (1931). Evolution in mendelian populations. Genetics, 16(2), 97-159. https://doi.org/10.1093/genetics/16.2.97.
Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114-138. https://doi.org/10.1093/genetics/28.2.114.
فهرسة مساهمة: Keywords: 2RAD/3RAD; Allopatric Speciation; Diversification; Gene Flow; Riverscape Genomics
تواريخ الأحداث: Date Created: 20220509 Date Completed: 20220628 Latest Revision: 20220810
رمز التحديث: 20240628
DOI: 10.1111/mec.16495
PMID: 35532943
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-294X
DOI:10.1111/mec.16495