دورية أكاديمية

Novel Salt-Tolerant Leucine Dehydrogenase from Marine Pseudoalteromonas rubra DSM 6842.

التفاصيل البيبلوغرافية
العنوان: Novel Salt-Tolerant Leucine Dehydrogenase from Marine Pseudoalteromonas rubra DSM 6842.
المؤلفون: Chen R; College of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, 530004, People's Republic of China., Liao YT; College of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, 530004, People's Republic of China., Gao TT; College of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, 530004, People's Republic of China., Zhang YM; College of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, 530004, People's Republic of China., Lu LH; College of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, 530004, People's Republic of China., Wang CH; College of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, 530004, People's Republic of China. chwang@gxu.edu.cn.
المصدر: Molecular biotechnology [Mol Biotechnol] 2022 Nov; Vol. 64 (11), pp. 1270-1278. Date of Electronic Publication: 2022 May 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Switzerland NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: [Cham] : Springer
Original Publication: Totowa, NJ : Humana Press, c1994-
مواضيع طبية MeSH: Escherichia coli*/genetics , Pseudoalteromonas*/genetics, Cloning, Molecular ; Enzyme Stability ; Hydrogen-Ion Concentration ; Leucine/genetics ; Leucine Dehydrogenase ; Recombinant Proteins/genetics ; Sodium Chloride
مستخلص: This study reported the cloning, expression, and characterization of a new salt-tolerant leucine dehydrogenase (PrLeuDH) from Pseudoalteromonas rubra DSM 6842. A codon-optimized 1038 bp gene encoding PrLeuDH was successfully expressed on pET-22b( +) in E. coli BL21(DE3). The purified recombinant PrLeuDH showed a single band of about 38.7 kDa on SDS-PAGE. It exhibited the maximum activity at 40 °C and pH 10.5, while kept high activities in the range of 25-45 °C and pH 9.5-12. The K m value and turnover number k cat for leucine of PrLeuDH were 2.23 ± 0.12 mM and 35.39 ± 0.05 s -1 , respectively, resulting in a catalytic efficiency k cat /K m of 15.87 s -1 /mM. Importantly, PrLeuDH remained 92.1 ± 2.67% active in the presence of 4.0 M NaCl. The study provides the first in-depth understanding of LeuDH from marine Pseudoalteromonas rubra, meanwhile the unique properties of high activity at low temperature and high salt tolerance make it a promising biocatalyst for the synthesis of non-protein amino acids and α-ketoacids under special conditions in pharmaceutical industry.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Polaina, J., & Maccabe, A. P. (2007). Industrial enzymes. Amino Acid Dehydrogenases., 10, 489–504.
Brunhuber, N., & Blanchard, J. S. (1994). The biochemistry and enzymology of amino acid dehydrogenases. Critical Reviews in Biochemistry & Molecular Biology., 29, 415–467. (PMID: 10.3109/10409239409083486)
Inoue, K., Makino, Y., & Itoh, N. (2005). Production of (R)-chiral alcohols by a hydrogen-transfer bioreduction with NADH-dependent Leifsonia alcohol dehydrogenase (LSADH). ChemInform, 16, 2539–2549.
Sanwal, B. D., & Zink, M. W. (1961). L-Leucine dehydrogenase of Bacillus cereus. Archives of Biochemistry & Biophysics., 94, 430–435. (PMID: 10.1016/0003-9861(61)90070-4)
Zink, M. W., & Sanwal, B. D. (1962). The distribution and substrate specificity of -leucine dehydrogenase. Archives of Biochemistry & Biophysics., 99, 72–77. (PMID: 10.1016/0003-9861(62)90245-X)
Zhu, W., Li, Y., Jia, H., Wei, P., Zhou, H., & Jiang, M. (2016). Expression, purification and characterization of a thermostable leucine dehydrogenase from the halophilic thermophile Laceyella sacchari. Biotechnology Letters., 38, 855–861. (PMID: 10.1007/s10529-016-2053-z)
Ohshima, T., Nishida, N., Bakthavatsalam, S., Kataoka, K., Takada, H., Yoshimura, T., Esaki, N., & Soda, K. (2010). The purification, characterization, cloning and sequencing of the gene for a halostable and thermostable leucine dehydrogenase from Thermoactinomyces intermedius. Febs Journal., 222, 305–312.
Nagata, S., Bakthavatsalam, S., & Galkin…, A. (1995). Gene cloning, purification, and characterization of thermostable and halophilic leucine dehydrogenase from a halophilic thermophile, Bacillus licheniformis TSN9. Applied Microbiology and Biotechnology., 44, 432–438. (PMID: 10.1007/BF00169940)
Reina, K., Shinji, N., Akira, O., & Ohshima, T. (2003). Purification and characterization of leucine dehydrogenase from an alkaliphilic halophile, Natronobacterium magadii MS-3. Journal of Molecular Catalysis B Enzymatic., 23, 231–238. (PMID: 10.1016/S1381-1177(03)00085-7)
Xavier, R., & Patrice, G. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42, W320. (PMID: 10.1093/nar/gku316)
Watts, A., Sankaranarayanan, S., Watts, A., & Raipuria, R. K. (2021). Optimizing protein expression in heterologous system: Strategies and tools. Meta Gene., 29, 100899. (PMID: 10.1016/j.mgene.2021.100899)
Xie, B. B., Shu, Y. L., Qin, Q. L., Rong, J. C., Zhang, X. Y., Chen, X. L., Zhou, B. C., & Zhang, Y. Z. (2012). Genome sequence of the cycloprodigiosin-producing bacterial strain Pseudoalteromonas rubra ATCC 29570T. Journal of Bacteriology, 194, 1637–1638. (PMID: 10.1128/JB.06822-11)
Baker, P. J., Turnbull, A. P., Sedelnikova, S. E., Stillman, T. J., & Rice, D. W. (1995). A role for quaternary structure in the substrate specificity of leucine dehydrogenase. Structure, 3, 693–705. (PMID: 10.1016/S0969-2126(01)00204-0)
Andrew, W., Martino, B., Stefan, B., Gabriel, S., Gerardo, T., Rafal, G., Heer, F. T., de Beer, A. P., Christine, R., & Lorenza, B. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46, W296–W303. (PMID: 10.1093/nar/gky427)
Gabriel, S., Christine, R., Waterhouse, A. M., Rafal, G., Juergen, H., & Torsten, S. (2019). QMEAND is co–distance constraints applied on model quality estimation. Bioinformatics, 36, 1765–1771.
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D Biological Crystallography., 66, 12–21. (PMID: 10.1107/S0907444909042073)
Nakasako, M., Fujisawa, T., Adachi, S., Kudo, T., & Higuchi, S. (2001). Large-scale domain movements and hydration structure changes in the active-site cleft of unligated glutamate dehydrogenase from Thermococcus profundus studied by cryogenic X-ray crystal structure analysis and small-angle X-ray scattering. Biochemistry, 40, 3069. (PMID: 10.1021/bi002482x)
Oliveira, T., Sharkey, M. A., Engel, P. C., & Khan, A. R. (2016). Crystal structure of a chimaeric bacterial glutamate dehydrogenase. Acta Crystallographica Section F: Structural Biology Communications., 72, 462–466.
Grzechowiak, M., Sliwiak, J., Ja Skolski, M., & Ruszkowski, M. (2020). Structural studies of glutamate dehydrogenase (Isoform 1) From Arabidopsis thaliana, an important enzyme at the branch-point between carbon and nitrogen metabolism. Frontiers in Plant Science., 11, 1. (PMID: 10.3389/fpls.2020.00754)
Yamaguchi, H., Kamegawa, A., Nakata, K., Kashiwagi, T., Mizukoshi, T., Fujiyoshi, Y., & Tani, K. (2018). Structural insights into thermostabilization of leucine dehydrogenase from its atomic structure by cryo-electron microscopy. Journal of Structural Biology, 205, 11–21. (PMID: 10.1016/j.jsb.2018.12.001)
Zhao, Y., Wakamatsu, T., Doi, K., Sakuraba, H., & Ohshima, T. (2013). Studies on enzymatic properties and crystal structure of L-leucine dehydrogenase from a psychrophilic bacterium Sporosarcina psychrophila. Journal of Molecular Catalysis B Enzymatic, 83, 65–72. (PMID: 10.1016/j.molcatb.2012.06.018)
Zhao, Y., Wakamatsu, T., Doi, K., Sakuraba, H., & Ohshima, T. (2012). A psychrophilic leucine dehydrogenase from Sporosarcina psychrophila: Purification, characterization, gene sequencing and crystal structure analysis. Journal of Molecular Catalysis B: Enzymatic., 83, 65–72. (PMID: 10.1016/j.molcatb.2012.06.018)
Yamaguchi, H., Kamegawa, A., Nakata, K., Kashiwagi, T., Mizukoshi, T., Fujiyoshi, Y., & Tani, K. (2018). Structural insights into thermostabilization of leucine dehydrogenase from its atomic structure by cryo-electron microscopy. Journal of Structural Biology., 205, 11–21. (PMID: 10.1016/j.jsb.2018.12.001)
Mahdizadehdehosta, R., Kianmehr, A., & Khalili, A. (2013). Isolation and characterization of Leucine dehydrogenase from a thermophilic Citrobacter freundii JK-91strain Isolated from Jask Port. Iranian Journal of Microbiology., 5, 278–284.
Jiang, W., Sun, D., Lu, J., Wang, Y., Wang, S., Zhang, Y., & Fang, B. (2016). A cold-adapted leucine dehydrogenase from marine bacterium Alcanivorax dieselolei: Characterization and l-tert-leucine production. Engineering in Life Sciences., 16, 283–289. (PMID: 10.1002/elsc.201500092)
Wang, Y., Hou, Y., Yifan Wang, L., Zheng, X. X., Pan, K., Li, R., & Wang, Q. (2018). A novel cold-adapted leucine dehydrogenase from antarctic sea-ice bacterium Pseudoalteromonas sp. ANT178. Marine Drugs., 16, 359. (PMID: 10.3390/md16100359)
Lu, J., Zhang, Y., Sun, D., Jiang, W., Wang, S., & Fang, B. (2016). the development of leucine dehydrogenase and formate dehydrogenase bifunctional enzyme cascade improves the biosynthsis of L-tert-leucine. Applied Biochemistry & Biotechnology., 180, 1–16. (PMID: 10.1007/s12010-016-2160-2)
Karst, U., Schutte, H., Baydoun, H., & Tsai, H. (1989). Purification and characterization of leucine dehydrogenase from the thermophile “Bacillus caldolyticus.” Microbiology, 16, 210–216.
Oren, A. (2008). Microbial life at high salt concentrations: Phylogenetic and metabolic diversity. Saline Systems., 4, 1–13. (PMID: 10.1186/1746-1448-4-2)
Graziano, G., & Merlino, A. (2014). Molecular bases of protein halotolerance. Biochimica et Biophysica Acta—Proteins & Proteomics, 1844, 850–858. (PMID: 10.1016/j.bbapap.2014.02.018)
Kastritis, P. L., Papandreou, N. C., & Hamodrakas, S. J. (2007). Haloadaptation: Insights from comparative modeling studies of halophilic archaeal DHFRs. International Journal of Biological Macromolecules., 41, 447–453. (PMID: 10.1016/j.ijbiomac.2007.06.005)
Pieper, U., Kapadia, G., Mevarech, M., & Herzberg, O. (1998). Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Structure., 6, 75–88. (PMID: 10.1016/S0969-2126(98)00009-4)
Tadeo, X., López-Méndez, B., Trigueros, T., Laín, A., Casta, O. D., Millet, O., & Petsko, G. A. (2009). Structural basis for the aminoacid composition of proteins from halophilic archea. Plos Biology., 7, e1000257. (PMID: 10.1371/journal.pbio.1000257)
Li, F. L., Shi, Y., Zhang, J. X., Gao, J., & Zhang, Y. W. (2018). Cloning, expression, characterization and homology modeling of a novel water-forming NADH oxidase from Streptococcus mutans ATCC 25175. International Journal of Biological Macromolecules, 113, 1073–1079. (PMID: 10.1016/j.ijbiomac.2018.03.016)
Galkin, A., Kulakova, L., Ashida, H., Sawa, Y., & Esaki, N. (1999). Cold-adapted alanine dehydrogenases from two Antarctic bacterial strains: Gene cloning, protein characterization, and comparison with mesophilic and thermophilic counterparts. Applied and Environmental Microbiology., 65, 4014–4020. (PMID: 10.1128/AEM.65.9.4014-4020.1999)
Siglioccolo, A., Gerace, R., & Pascarella, S. (2010). “Cold spots” in protein cold adaptation: Insights from normalized atomic displacement parameters (B′ -factors). Biophysical Chemistry., 153, 104–114. (PMID: 10.1016/j.bpc.2010.10.009)
معلومات مُعتمدة: No. AD211064 the Guangxi science and technology base and talent special project; No. Bhsfs010-4 the Beihai 13th five year plan
فهرسة مساهمة: Keywords: Alkali resistance; Biocatalyst; Cold-adapted; Leucine dehydrogenase; Pseudoalteromonas rubra; Salt-tolerant; α-ketoacid
المشرفين على المادة: 0 (Recombinant Proteins)
451W47IQ8X (Sodium Chloride)
EC 1.4.1.9 (Leucine Dehydrogenase)
GMW67QNF9C (Leucine)
SCR Organism: Pseudoalteromonas rubra
تواريخ الأحداث: Date Created: 20220516 Date Completed: 20220929 Latest Revision: 20220929
رمز التحديث: 20231215
DOI: 10.1007/s12033-022-00505-0
PMID: 35578070
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0305
DOI:10.1007/s12033-022-00505-0