دورية أكاديمية

A topological refactoring design strategy yields highly stable granulopoietic proteins.

التفاصيل البيبلوغرافية
العنوان: A topological refactoring design strategy yields highly stable granulopoietic proteins.
المؤلفون: Skokowa J; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany. julia.skokowa@med.uni-tuebingen.de., Hernandez Alvarez B; Max Planck Institute for Biology, 72076, Tübingen, Germany., Coles M; Max Planck Institute for Biology, 72076, Tübingen, Germany., Ritter M; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany., Nasri M; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany., Haaf J; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany., Aghaallaei N; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany., Xu Y; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany., Mir P; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany., Krahl AC; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany., Rogers KW; Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany.; Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA., Maksymenko K; Max Planck Institute for Biology, 72076, Tübingen, Germany.; Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany., Bajoghli B; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany., Welte K; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany., Lupas AN; Max Planck Institute for Biology, 72076, Tübingen, Germany., Müller P; Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany.; Department of Biology, University of Konstanz, 78464, Konstanz, Germany., ElGamacy M; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany. mohammad.elgamacy@tuebingen.mpg.de.; Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany. mohammad.elgamacy@tuebingen.mpg.de.; Heliopolis Biotechnology Ltd, Cambridge, CB24 9RX, UK. mohammad.elgamacy@tuebingen.mpg.de.; Max Planck Institute for Biology, 72076, Tübingen, Germany. mohammad.elgamacy@tuebingen.mpg.de.
المصدر: Nature communications [Nat Commun] 2022 May 26; Vol. 13 (1), pp. 2948. Date of Electronic Publication: 2022 May 26.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Granulocyte Colony-Stimulating Factor*/genetics , Hematopoiesis*, Hematopoietic Stem Cells ; Humans ; Neutrophils
مستخلص: Protein therapeutics frequently face major challenges, including complicated production, instability, poor solubility, and aggregation. De novo protein design can readily address these challenges. Here, we demonstrate the utility of a topological refactoring strategy to design novel granulopoietic proteins starting from the granulocyte-colony stimulating factor (G-CSF) structure. We change a protein fold by rearranging the sequence and optimising it towards the new fold. Testing four designs, we obtain two that possess nanomolar activity, the most active of which is highly thermostable and protease-resistant, and matches its designed structure to atomic accuracy. While the designs possess starkly different sequence and structure from the native G-CSF, they show specific activity in differentiating primary human haematopoietic stem cells into mature neutrophils. The designs also show significant and specific activity in vivo. Our topological refactoring approach is largely independent of sequence or structural context, and is therefore applicable to a wide range of protein targets.
(© 2022. The Author(s).)
References: Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320 (2016). (PMID: 2762963810.1038/nature19946)
Woolfson, D. N. et al. De novo protein design: how do we expand into the universe of possible protein structures? Curr. Opin. Struct. Biol. 33, 16–26 (2015). (PMID: 2609306010.1016/j.sbi.2015.05.009)
Kuhlman, B. & Bradley, P. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 20, 681–697 (2019). (PMID: 31417196703203610.1038/s41580-019-0163-x)
Kintzing, J. R., Filsinger Interrante, M. V. & Cochran, J. R. Emerging strategies for developing next-generation protein therapeutics for cancer treatment. Trends Pharmacol. Sci. 37, 993–1008 (2016). (PMID: 27836202623864110.1016/j.tips.2016.10.005)
Cicerone, M., Giri, J., Shaked, Z. E. & Roberts, C. Protein stability—an underappreciated but critical need for drug delivery systems. Adv. Drug Deliv. Rev. 93, 1 (2015). (PMID: 2649727410.1016/j.addr.2015.10.001)
Ivankov, D. N. et al. Contact order revisited: influence of protein size on the folding rate. Protein Sci. 12, 2057–2062 (2003). (PMID: 12931003232400110.1110/ps.0302503)
Dagan, S. et al. Stabilization of a protein conferred by an increase in folded state entropy. Proc. Natl Acad. Sci. USA 110, 10628–10633 (2013). (PMID: 23754389369681410.1073/pnas.1302284110)
Zhou, H.-X. Loops, linkages, rings, catenanes, cages, and crowders:  entropy-based strategies for stabilizing proteins. Acc. Chem. Res. 37, 123–130 (2004). (PMID: 1496705910.1021/ar0302282)
Xu, D. & Nussinov, R. Favorable domain size in proteins. Fold. Des. 3, 11–17 (1998). (PMID: 950231610.1016/S1359-0278(98)00004-2)
Bendall, L. J. & Bradstock, K. F. G-CSF: from granulopoietic stimulant to bone marrow stem cell mobilizing agent. Cytokine Growth Factor Rev. 25, 355–367 (2014). (PMID: 2513180710.1016/j.cytogfr.2014.07.011)
Annabel Strife, C. L. et al. Activities of four purified growth factors on highly enriched human hematopoietic progenitor cells. Blood 69, 1508–1523 (1987). (PMID: 10.1182/blood.V69.5.1508.1508)
Welte, K. et al. Recombinant human granulocyte colony-stimulating factor. Effects on hematopoiesis in normal and cyclophosphamide-treated primates. J. Exp. Med. 165, 941–948 (1987). (PMID: 349409410.1084/jem.165.4.941)
Körbling, M. & Anderlini, P. Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood 98, 2900–2908 (2001). (PMID: 1169826910.1182/blood.V98.10.2900)
Welte, K., Gabrilove, J., Bronchud, M. H., Platzer, E. & Morstyn, G. Filgrastim (r-metHuG-CSF): the first 10 years. Blood 88, 1907–1929 (1996). (PMID: 882290810.1182/blood.V88.6.1907.bloodjournal8861907)
Kuwabara, T., Kobayashi, S. & Sugiyama, Y. Pharmacokinetics and pharmacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab. Rev. 28, 625–658 (1996). (PMID: 895939310.3109/03602539608994020)
Souza, L. M. et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 232, 61 (1986). (PMID: 242000910.1126/science.232.4746.61)
Arakawa, T., Prestrelski, S. J., Narhi, L. O., Boone, T. C. & Kenney, W. C. Cysteine 17 of recombinant human granulocyte-colony stimulating factor is partially solvent-exposed. J. Protein Chem. 12, 525–531 (1993). (PMID: 751138610.1007/BF01025117)
Luo, P. et al. Development of a cytokine analog with enhanced stability using computational ultrahigh throughput screening. Protein Sci. 11, 1218–1226 (2002). (PMID: 11967378237356810.1110/ps.4580102)
Sarkar, C. A. et al. Rational cytokine design for increased lifetime and enhanced potency using pH-activated “histidine switching”. Nat. Biotechnol. 20, 908 (2002). (PMID: 1216175910.1038/nbt725)
Bishop, B., Koay, D. C., Sartorelli, A. C. & Regan, L. Reengineering granulocyte colony-stimulating factor for enhanced stability. J. Biol. Chem. 276, 33465–33470 (2001). (PMID: 1140663210.1074/jbc.M104494200)
Piedmonte, D. M. & Treuheit, M. J. Formulation of Neulasta® (pegfilgrastim). Adv. Drug Deliv. Rev. 60, 50–58 (2008). (PMID: 1782280210.1016/j.addr.2007.04.017)
Kinstler, O. B. et al. Characterization and stability of N-terminally PEGylated rhG-CSF. Pharm. Res. 13, 996–1002 (1996). (PMID: 884203510.1023/A:1016042220817)
Miyafusa, T. et al. Backbone circularization coupled with optimization of connecting segment in effectively improving the stability of granulocyte-colony stimulating factor. ACS Chem. Biol. 12, 2690–2696 (2017). (PMID: 2889571710.1021/acschembio.7b00776)
Popp, M. W., Dougan, S. K., Chuang, T.-Y., Spooner, E. & Ploegh, H. L. Sortase-catalyzed transformations that improve the properties of cytokines. Proc. Natl Acad. Sci. USA 108, 3169 (2011). (PMID: 21297034304438710.1073/pnas.1016863108)
Dwivedi, P. & Greis, K. D. Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies. Exp. Hematol. 46, 9–20 (2017). (PMID: 2778933210.1016/j.exphem.2016.10.008)
Tamada, T. et al. Homodimeric cross-over structure of the human granulocyte colony-stimulating factor (GCSF) receptor signaling complex. Proc. Natl Acad. Sci. USA 103, 3135 (2006). (PMID: 16492764141392010.1073/pnas.0511264103)
Hara, K. et al. Bipotential murine hemopoietic cell line (NFS-60) that is responsive to IL-3, GM-CSF, G-CSF, and erythropoietin. Exp. Hematol. 16, 256–261 (1988). (PMID: 2452092)
Alvarez, B. H. et al. Design of novel granulopoietic proteins by topological rescaffolding. PLoS Biol. 18, e3000919 (2020). (PMID: 10.1371/journal.pbio.3000919)
Skokowa, J. & Welte, K. Defective G-CSFR signaling pathways in congenital neutropenia. Hematol./Oncol. Clin. North Am. 27, 75–88 (2013). (PMID: 10.1016/j.hoc.2012.11.001)
Vanz, A. L. S. et al. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization. Microb. Cell Factories 7, 13 (2008). (PMID: 10.1186/1475-2859-7-13)
Carter, C. R. D., Whitmore, K. M. & Thorpe, R. The significance of carbohydrates on G-CSF: differential sensitivity of G-CSFs to human neutrophil elastase degradation. J. Leukoc. Biol. 75, 515–522 (2004). (PMID: 1465721010.1189/jlb.0803378)
El Ouriaghli, F. et al. Neutrophil elastase enzymatically antagonizes the in vitro action of G-CSF: implications for the regulation of granulopoiesis. Blood 101, 1752 (2003). (PMID: 1239352210.1182/blood-2002-06-1734)
ElGamacy, M., Riss, M., Zhu, H., Truffault, V. & Coles, M. Mapping local conformational landscapes of proteins in solution. Structure 27, 853–865.e5 (2019). (PMID: 3093006510.1016/j.str.2019.03.005)
Diercks, T., Coles, M. & Kessler, H. An efficient strategy for assignment of cross-peaks in 3D heteronuclear NOESY experiments. J. Biomol. NMR 15, 177–180 (1999). (PMID: 2087211010.1023/A:1008367912535)
Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009). (PMID: 19548092272699010.1007/s10858-009-9333-z)
Heinzelman, P., Schoborg, J. A. & Jewett, M. C. pH responsive granulocyte colony-stimulating factor variants with implications for treating Alzheimer’s disease and other central nervous system disorders. Protein Eng. Des. Sel. 28, 481–489 (2015). (PMID: 25877663459627810.1093/protein/gzv022)
Mine, S. et al. Thermodynamic analysis of the activation mechanism of the GCSF receptor induced by ligand binding. Biochemistry 43, 2458–2464 (2004). (PMID: 1499258310.1021/bi0356855)
Syed, R. S. et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395, 511–516 (1998). (PMID: 977410810.1038/26773)
Staerk, J. et al. Orientation-specific signalling by thrombopoietin receptor dimers. EMBO J. 30, 4398–4413 (2011). (PMID: 21892137323037310.1038/emboj.2011.315)
Moraga, I. et al. Tuning cytokine receptor signaling by re-orienting dimer geometry with surrogate ligands. Cell 160, 1196–1208 (2015). (PMID: 25728669476681310.1016/j.cell.2015.02.011)
Renshaw, S. A. et al. A transgenic zebrafish model of neutrophilic inflammation. Blood 108, 3976–3978 (2006). (PMID: 1692628810.1182/blood-2006-05-024075)
Spangler, J. B., Moraga, I., Mendoza, J. L. & Garcia, K. C. Insights into cytokine-receptor interactions from cytokine engineering. Annu. Rev. Immunol. 33, 139–167 (2015). (PMID: 2549333210.1146/annurev-immunol-032713-120211)
Aziz, N. et al. Stability of cytokines, chemokines and soluble activation markers in unprocessed blood stored under different conditions. Cytokine 84, 17–24 (2016). (PMID: 27208752491082210.1016/j.cyto.2016.05.010)
Silva, D.-A. et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186–191 (2019). (PMID: 30626941652169910.1038/s41586-018-0830-7)
Viguera, A.-R. & Serrano, L. Loop length, intramolecular diffusion and protein folding. Nat. Struct. Biol. 4, 939–946 (1997). (PMID: 936061110.1038/nsb1197-939)
Chirino, A. J., Ary, M. L. & Marshall, S. A. Minimizing the immunogenicity of protein therapeutics. Drug Discov. Today 9, 82–90 (2004). (PMID: 1501293210.1016/S1359-6446(03)02953-2)
Young, D. C., Zhan, H., Cheng, Q. L., Hou, J. & Matthews, D. J. Characterization of the receptor binding determinants of granulocyte colony stimulating factor. Protein Sci. 6, 1228–1236 (1997). (PMID: 9194183214373110.1002/pro.5560060611)
Aritomi, M. et al. Atomic structure of the GCSF–receptor complex showing a new cytokine–receptor recognition scheme. Nature 401, 713–717 (1999). (PMID: 1053711110.1038/44394)
Layton, J. E., Hall, N. E., Connell, F., Venhorst, J. & Treutlein, H. R. Identification of ligand-binding site III on the immunoglobulin-like domain of the granulocyte colony-stimulating factor receptor. J. Biol. Chem. 276, 36779–36787 (2001). (PMID: 1146828410.1074/jbc.M104787200)
Zink, T. et al. Structure and dynamics of the human granulocyte colony-stimulating factor determined by NMR spectroscopy. Loop mobility in a four-helix-bundle protein. Biochemistry 33, 8453–8463 (1994). (PMID: 751824910.1021/bi00194a009)
Jensen-Pippo, K. E., Whitcomb, K. L., DePrince, R. B., Ralph, L. & Habberfield, A. D. Enteral bioavailability of human granulocyte colony stimulating factor conjugated with poly(ethylene glycol). Pharm. Res. 13, 102–107 (1996). (PMID: 866865610.1023/A:1016089503186)
Liu, L., Liu, Y., Yan, X., Zhou, C. & Xiong, X. The role of granulocyte colony‑stimulating factor in breast cancer development: a review. Mol. Med. Rep. 21, 2019–2029 (2020). (PMID: 321867677115204)
Fleishman, S. J. et al. RosettaScripts: a scripting language interface to the rosetta macromolecular modeling suite. PLoS ONE 6, e20161 (2011). (PMID: 21731610312329210.1371/journal.pone.0020161)
ElGamacy, M., Coles, M. & Lupas, A. Asymmetric protein design from conserved supersecondary structures. J. Struct. Biol. 204, 380–387 (2018). (PMID: 3055871810.1016/j.jsb.2018.10.010)
Leaver-Fay, A. et al. Scientific benchmarks for guiding macromolecular energy function improvement. In Methods in Enzymology, Vol. 523 (ed. Keating, A.E.) 109–143 (Academic Press, 2013).
Sheffler, W. & Baker, D. RosettaHoles: rapid assessment of protein core packing for structure prediction, refinement, design, and validation. Protein Sci. 18, 229–239 (2009). (PMID: 19177366)
Costantini, S., Colonna, G. & Facchiano, A. M. Amino acid propensities for secondary structures are influenced by the protein structural class. Biochem. Biophys. Res. Commun. 342, 441–451 (2006). (PMID: 1648748110.1016/j.bbrc.2006.01.159)
Wintjens, R. T., Rooman, M. J. & Wodak, S. J. Automatic classification and analysis of alpha alpha-turn motifs in proteins. J. Mol. Biol. 255, 235–253 (1996). (PMID: 856887110.1006/jmbi.1996.0020)
Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinforma. 54, 5.6.1–5.6.37 (2016). (PMID: 10.1002/cpbi.3)
Nymeyer, H. Serial tempering without exchange. J. Chem. Phys. 133, 114113 (2010). (PMID: 2086613210.1063/1.3480013)
Eastman, P. et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017). (PMID: 28746339554999910.1371/journal.pcbi.1005659)
Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005). (PMID: 16222654248633910.1002/jcc.20289)
Ferrara, P., Apostolakis, J. & Caflisch, A. Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins: Struct. Funct. Bioinforma. 46, 24–33 (2002). (PMID: 10.1002/prot.10001)
Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982). (PMID: 710895510.1016/0022-2836(82)90515-0)
Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017). (PMID: 28430426571776310.1021/acs.jctc.7b00125)
Reichelt, P., Schwarz, C. & Donzeau, M. Single step protocol to purify recombinant proteins with low endotoxin contents. Protein Expr. Purif. 46, 483–488 (2006). (PMID: 1629000510.1016/j.pep.2005.09.027)
Aida, Y. & Pabst, M. J. Removal of endotoxin from protein solutions by phase separation using Triton X-114. J. Immunol. Methods 132, 191–195 (1990). (PMID: 217053310.1016/0022-1759(90)90029-U)
Kelstrup, C. D. et al. Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field orbitrap mass spectrometer. J. Proteome Res. 13, 6187–6195 (2014). (PMID: 2534996110.1021/pr500985w)
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). (PMID: 1902991010.1038/nbt.1511)
Cox, J. et al. Andromeda: a peptide search engine integrated into the maxquant environment. J. Proteome Res. 10, 1794–1805 (2011). (PMID: 2125476010.1021/pr101065j)
Käll, L., Storey, J. D., MacCoss, M. J. & Noble, W. S. Posterior error probabilities and false discovery rates: two sides of the same coin. J. Proteome Res. 7, 40–44 (2008). (PMID: 1805211810.1021/pr700739d)
Bradley, P., Misura, K. M. S. & Baker, D. Toward high-resolution de novo structure prediction for small proteins. Science 309, 1868–1871 (2005). (PMID: 1616651910.1126/science.1113801)
Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012). (PMID: 23341755354927310.1021/ct300400x)
Schwieters, C. D., Kuszewski, J. J., Tjandra, N. & Clore, G. M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003). (PMID: 1256505110.1016/S1090-7807(02)00014-9)
Farrow, N. A. et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994). (PMID: 751403910.1021/bi00185a040)
Gemmecker, G., Jahnke, W. & Kessler, H. Measurement of fast proton exchange rates in isotopically labeled compounds. J. Am. Chem. Soc. 115, 11620–11621 (1993). (PMID: 10.1021/ja00077a080)
Krämer, S. D., Wöhrle, J., Rath, C. & Roth, G. Anabel: an online tool for the real-time kinetic analysis of binding events. Bioinforma. Biol. Insights 13, 1177932218821383 (2019).
Stemmer, M., Thumberger, T., del Sol Keyer, M., Wittbrodt, J. & Mateo, J. L. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE 10, e0124633 (2015). (PMID: 25909470440922110.1371/journal.pone.0124633)
Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168–e168 (2014). (PMID: 25300484426766910.1093/nar/gku936)
المشرفين على المادة: 143011-72-7 (Granulocyte Colony-Stimulating Factor)
تواريخ الأحداث: Date Created: 20220526 Date Completed: 20220530 Latest Revision: 20221113
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC9135769
DOI: 10.1038/s41467-022-30157-2
PMID: 35618709
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-022-30157-2