دورية أكاديمية

Polymicrobial infections can select against Pseudomonas aeruginosa mutators because of quorum-sensing trade-offs.

التفاصيل البيبلوغرافية
العنوان: Polymicrobial infections can select against Pseudomonas aeruginosa mutators because of quorum-sensing trade-offs.
المؤلفون: Luján AM; ESI and CEC, Biosciences, University of Exeter, Penryn, UK. adem.lujan@gmail.com.; Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina. adem.lujan@gmail.com.; Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Córdoba, Argentina. adem.lujan@gmail.com.; Instituto de Investigaciones en Recursos Naturales y Sustentabilidad Jose Sanchez Labrador S.J., IRNASUS-CONICET, Córdoba, Argentina. adem.lujan@gmail.com., Paterson S; Institute of Integrative Biology, University of Liverpool, Liverpool, UK., Hesse E; ESI and CEC, Biosciences, University of Exeter, Penryn, UK., Sommer LM; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark., Marvig RL; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.; Center for Genomic Medicine, Rigshopitalet, Copenhagen, Denmark., Sharma MD; ESI and CEC, Biosciences, University of Exeter, Penryn, UK., Alseth EO; ESI and CEC, Biosciences, University of Exeter, Penryn, UK., Ciofu O; Costerton Biofilm Center, Department for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark., Smania AM; Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.; Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Córdoba, Argentina., Molin S; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark., Johansen HK; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.; Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark., Buckling A; ESI and CEC, Biosciences, University of Exeter, Penryn, UK.
المصدر: Nature ecology & evolution [Nat Ecol Evol] 2022 Jul; Vol. 6 (7), pp. 979-988. Date of Electronic Publication: 2022 May 26.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: England NLM ID: 101698577 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2397-334X (Electronic) Linking ISSN: 2397334X NLM ISO Abbreviation: Nat Ecol Evol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Springer Nature
مواضيع طبية MeSH: Coinfection*/complications , Cystic Fibrosis*/complications , Cystic Fibrosis*/microbiology , Pseudomonas Infections*/complications , Pseudomonas Infections*/microbiology, Humans ; Pseudomonas aeruginosa/genetics ; Quorum Sensing
مستخلص: Bacteria with increased mutation rates (mutators) are common in chronic infections and are associated with poorer clinical outcomes, especially in the case of Pseudomonas aeruginosa infecting cystic fibrosis (CF) patients. There is, however, considerable between-patient variation in both P. aeruginosa mutator frequency and the composition of co-infecting pathogen communities. We investigated whether community context might affect selection of mutators. Using an in vitro CF model community, we show that P. aeruginosa mutators were favoured in the absence of other species but not in their presence. This was because there were trade-offs between adaptation to the biotic and abiotic environments (for example, loss of quorum sensing and associated toxin production was beneficial in the latter but not the former in our in vitro model community) limiting the evolvability advantage of an elevated mutation rate. Consistent with a role of co-infecting pathogens selecting against P. aeruginosa mutators in vivo, we show that the mutation frequency of P. aeruginosa population was negatively correlated with the frequency and diversity of co-infecting bacteria in CF infections. Our results suggest that co-infecting taxa can select against P. aeruginosa mutators, which may have potentially beneficial clinical consequences.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
References: van Valen, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).
Stenseth, N. C. & Smith, J. M. Coevolution in ecosystems: Red Queen evolution or stasis? Evolution 38, 870–880 (1984). (PMID: 2855582410.1111/j.1558-5646.1984.tb00358.x)
de Mazancourt, C., Johnson, E. & Barraclough, T. G. Biodiversity inhibits species’ evolutionary responses to changing environments. Ecol. Lett. 11, 380–388 (2008). (PMID: 1824844910.1111/j.1461-0248.2008.01152.x)
Morran, L. T., Schmidt, O. G., Gelarden, I. A., Parrish, R. C. & Lively, C. M. Running with the Red Queen: host–parasite coevolution selects for biparental sex. Science 333, 216–218 (2011). (PMID: 21737739340216010.1126/science.1206360)
Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites (a review). Proc. Natl Acad. Sci. USA 87, 3566–3573 (1990). (PMID: 21854765394310.1073/pnas.87.9.3566)
Taddei, F. et al. Role of mutator alleles in adaptive evolution. Nature 387, 700–702 (1997). (PMID: 919289310.1038/42696)
Pal, C., Maciá, M. D., Oliver, A., Schachar, I. & Buckling, A. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450, 1079–1081 (2007). (PMID: 1805946110.1038/nature06350)
terHorst, C. P. et al. Evolution in a community context: trait responses to multiple species interactions. Am. Nat. 191, 368–390 (2018). (PMID: 10.1086/695835)
Wielgoss, S. et al. Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc. Natl Acad. Sci. USA 110, 222–227 (2013). (PMID: 2324828710.1073/pnas.1219574110)
Tenaillon, O., le Nagard, H., Godelle, B. & Taddei, F. Mutators and sex in bacteria: conflict between adaptive strategies. Proc. Natl Acad. Sci. USA 97, 10465–10470 (2000). (PMID: 109734742704710.1073/pnas.180063397)
Raynes, Y., Wylie, C. S., Sniegowski, P. D. & Weinreich, D. M. Sign of selection on mutation rate modifiers depends on population size. Proc. Natl Acad. Sci. USA 115, 3422–3427 (2018). (PMID: 29531067587966410.1073/pnas.1715996115)
LeClerc, J. E., Li, B., Payne, W. L. & Cebula, T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996). (PMID: 889547310.1126/science.274.5290.1208)
Matic, I. et al. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277, 1833–1834 (1997). (PMID: 932476910.1126/science.277.5333.1833)
Denamur, E. et al. High frequency of mutator strains among human uropathogenic Escherichia coli isolates. J. Bacteriol. 184, 605–609 (2002). (PMID: 1175184413956410.1128/JB.184.2.605-609.2002)
Oliver, A. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1253 (2000). (PMID: 1081800210.1126/science.288.5469.1251)
Feliziani, S. et al. Mucoidy, quorum sensing, mismatch repair and antibiotic resistance in Pseudomonas aeruginosa from cystic fibrosis chronic airways infections. PLoS ONE 5, e12669 (2010). (PMID: 20844762293703310.1371/journal.pone.0012669)
Watson, M. E., Burns, J. L. & Smith, A. L. Hypermutable Haemophilus influenzae with mutations in mutS are found in cystic fibrosis sputum. Microbiology 150, 2947–2958 (2004). (PMID: 1534775310.1099/mic.0.27230-0)
Martina, P. et al. Hypermutation in Burkholderia cepacia complex is mediated by DNA mismatch repair inactivation and is highly prevalent in cystic fibrosis chronic respiratory infection. Int. J. Med. Microbiol. 304, 1182–1191 (2014). (PMID: 2521707810.1016/j.ijmm.2014.08.011)
Prunier, A. L. et al. High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J. Infect. Dis. 187, 1709–1716 (2003). (PMID: 1275102810.1086/374937)
del Campo, R. et al. Population structure, antimicrobial resistance, and mutation frequencies of Streptococcus pneumoniae isolates from cystic fibrosis patients. J. Clin. Microbiol. 43, 2207–2214 (2005). (PMID: 15872243115375510.1128/JCM.43.5.2207-2214.2005)
Jolivet-Gougeon, A. et al. Bacterial hypermutation: clinical implications. J. Med. Microbiol. 60, 563–573 (2011). (PMID: 2134999210.1099/jmm.0.024083-0)
Ferroni, A. et al. Effect of mutator P. aeruginosa on antibiotic resistance acquisition and respiratory function in cystic fibrosis. Pediatr. Pulmonol. 44, 820–825 (2009). (PMID: 1959827810.1002/ppul.21076)
Waine, D. J., Honeybourne, D., Smith, E. G., Whitehouse, J. L. & Dowson, C. G. Association between hypermutator phenotype, clinical variables, mucoid phenotype, and antimicrobial resistance in Pseudomonas aeruginosa. J. Clin. Microbiol. 46, 3491–3493 (2008). (PMID: 18685006256612410.1128/JCM.00357-08)
Schaaff, F., Reipert, A. & Bierbaum, G. An elevated mutation frequency favors development of vancomycin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 46, 3540–3548 (2002). (PMID: 1238436212874110.1128/AAC.46.11.3540-3548.2002)
Maciá, M. D. et al. Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob. Agents Chemother. 49, 3382–3386 (2005). (PMID: 16048951119624710.1128/AAC.49.8.3382-3386.2005)
Feliziani, S. et al. Coexistence and within-host evolution of diversified lineages of hypermutable Pseudomonas aeruginosa in long-term cystic fibrosis infections. PLoS Genet. 10, e1004651 (2014).
Blázquez, J. Hypermutation as a factor contributing to the acquisition of antimicrobial resistance. Clin. Infect. Dis. 37, 1201–1209 (2003). (PMID: 1455796510.1086/378810)
Mowat, E. et al. Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am. J. Respir. Crit. Care Med. 183, 1674–1679 (2011). (PMID: 2129707210.1164/rccm.201009-1430OC)
Harrison, F. Microbial ecology of the cystic fibrosis lung. Microbiology 153, 917–923 (2007). (PMID: 1737970210.1099/mic.0.2006/004077-0)
O’Brien, S. & Fothergill, J. L. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung. FEMS Microbiol. Lett. 364, fnx128 (2017). (PMID: 5812498)
Alseth, E. O. et al. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature 574, 549–552 (2019).
Ross-Gillespie, A., Gardner, A., West, S. A. & Griffin, A. S. Frequency dependence and cooperation: theory and a test with bacteria. Am. Nat. 170, 331–342 (2007). (PMID: 1787918510.1086/519860)
Torres-Barcelo, C., Cabot, G., Oliver, A., Buckling, A. & MacLean, R. C. A trade-off between oxidative stress resistance and DNA repair plays a role in the evolution of elevated mutation rates in bacteria. Proc. R. Soc. B 280, 20130007 (2013).
Chao, L. & Cox, E. C. Competition between high and low mutating strains of Escherichia coli. Evolution 37, 125–134 (1983). (PMID: 2856801610.1111/j.1558-5646.1983.tb05521.x)
Farrow, J. M. & Pesci, E. C. Distal and proximal promoters co-regulate pqsR expression in Pseudomonas aeruginosa. Mol. Microbiol. 104, 78–91 (2017). (PMID: 28010047536408110.1111/mmi.13611)
Köhler, T., Ouertatani-Sakouhi, H., Cosson, P. & van Delden, C. QsrO a novel regulator of quorum-sensing and virulence in Pseudomonas aeruginosa. PLoS ONE 9, e87814 (2014). (PMID: 24551066392375510.1371/journal.pone.0087814)
Tognon, M. et al. Co-evolution with Staphylococcus aureus leads to lipopolysaccharide alterations in Pseudomonas aeruginosa. ISME J. 11, 2233–2243 (2017). (PMID: 28548661560736510.1038/ismej.2017.83)
Wright, E. A., Fothergill, J. L., Paterson, S., Brockhurst, M. A. & Winstanley, C. Sub-inhibitory concentrations of some antibiotics can drive diversification of Pseudomonas aeruginosa populations in artificial sputum medium. BMC Microbiol. 13, 170 (2013). (PMID: 23879797372634210.1186/1471-2180-13-170)
Luján, A. M., Moyano, A. J., Segura, I., Argaraña, C. E. & Smania, A. M. Quorum-sensing-deficient (lasR) mutants emerge at high frequency from a Pseudomonas aeruginosa mutS strain. Microbiology 153, 225–237 (2007).
Heurlier, K. et al. Quorum-sensing-negative (lasR) mutants of Pseudomonas aeruginosa avoid cell lysis and death. J. Bacteriol. 187, 4875–4883 (2005). (PMID: 15995202116953610.1128/JB.187.14.4875-4883.2005)
Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007). (PMID: 1800438310.1038/nature06279)
Sandoz, K. M., Mitzimberg, S. M. & Schuster, M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc. Natl Acad. Sci. USA 104, 15876–15881 (2007). (PMID: 17898171200039410.1073/pnas.0705653104)
Dietrich, L. E. P., Price-Whelan, A., Petersen, A., Whiteley, M. & Newman, D. K. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 61, 1308–1321 (2006). (PMID: 1687941110.1111/j.1365-2958.2006.05306.x)
Rahme, L. G. et al. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl Acad. Sci. USA 94, 13245–13250 (1997). (PMID: 93718312429410.1073/pnas.94.24.13245)
Tashiro, Y., Yawata, Y., Toyofuku, M., Uchiyama, H. & Nomura, N. Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microbes Environ. 28, 13–24 (2013). (PMID: 23363620407068410.1264/jsme2.ME12167)
Li, C., Wally, H., Miller, S. J. & Lu, C. D. The multifaceted proteins MvaT and MvaU, members of the H-NS family, control arginine metabolism, pyocyanin synthesis, and prophage activation in Pseudomonas aeruginosa PAO1. J. Bacteriol. 191, 6211–6218 (2009). (PMID: 19684136275302010.1128/JB.00888-09)
Rada, B., Gardina, P., Myers, T. G. & Leto, T. L. Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseudomonas pyocyanin. Mucosal Immunol. 4, 158–171 (2011). (PMID: 2096277310.1038/mi.2010.62)
López-Causapé, C. et al. Evolution of the Pseudomonas aeruginosa mutational resistome in an international cystic fibrosis clone. Sci. Rep. 7, 5555 (2017). (PMID: 28717172551403510.1038/s41598-017-05621-5)
Denamur, E. & Matic, I. Evolution of mutation rates in bacteria. Mol. Microbiol. 60, 820–827 (2006). (PMID: 1667729510.1111/j.1365-2958.2006.05150.x)
Giraud, A. et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608 (2001). (PMID: 1128337310.1126/science.1056421)
Buckling, A. & Rainey, P. B. Antagonistic coevolution between a bacterium and a bacteriophage. Proc. Biol. Sci. 269, 931–936 (2002). (PMID: 12028776169098010.1098/rspb.2001.1945)
Abdulhussien, Z. R. & Atia, S. S. Antimicrobial effect of pyocyanin extracted from Pseudomonas aeruginosa. Eur. J. Exp. Biol. 6, 6 (2016).
DeBritto, S. et al. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci. Rep. 10, 1542 (2020).
Castledine, M. et al. Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. eLife 11, e73679 (2022).
Kirchner, S. et al. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J. Vis. Exp. 64, 3857 (2012).
Davies, E. V., James, C. E., Brockhurst, M. A. & Winstanley, C. Evolutionary diversification of Pseudomonas aeruginosa in an artificial sputum model. BMC Microbiol. 17, 3 (2017). (PMID: 28056789521658010.1186/s12866-016-0916-z)
Choi, K.-H. & Schweizer, H. P. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat. Protoc. 1, 153–161 (2006). (PMID: 1740622710.1038/nprot.2006.24)
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015). (PMID: 10.18637/jss.v067.i01)
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.3.30 http://florianhartig.github.io/DHARMa/ (2020).
Lüdecke, D., Ben-Shachar, M. S., Patil, I. & Makowski, D. Extracting, computing and exploring the parameters of statistical models using R. J. Open Source Softw. 5, 2445 (2020). (PMID: 10.21105/joss.02445)
Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016). (PMID: 10.18637/jss.v069.i01)
Wickham, H. ggplot2: Elegant Graphics of Data Analysis (Springer-Verlag, 2016).
Williams, D. et al. Divergent, coexisting Pseudomonas aeruginosa lineages in chronic cystic fibrosis lung infections. Am. J. Respir. Crit. Care Med. https://doi.org/10.1164/rccm.201409-1646OC (2015).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2011).
Sarker, M. R. & Cornelis, G. R. An improved version of suicide vector pKNG101 for gene replacement in Gram-negative bacteria. Mol. Microbiol. 23, 410–411 (1997). (PMID: 904427510.1046/j.1365-2958.1997.t01-1-00190.x)
Hernandez, R. J. et al. Using the wax moth larva Galleria mellonella infection model to detect emerging bacterial pathogens. PeerJ 6, e6150 (2019). (PMID: 30631644632248210.7717/peerj.6150)
Therneau, T. M. A Package for Survival Analysis in S. R package version 2.38 http://cran.r-project.org/package=survival (2015).
Lim, Y. W. et al. Metagenomics and metatranscriptomics: windows on CF-associated viral and microbial communities. J. Cyst. Fibros. 12, 154–164 (2013). (PMID: 2295120810.1016/j.jcf.2012.07.009)
Schmieder, R. & Edwards, R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE 6, e17288 (2011). (PMID: 21408061305230410.1371/journal.pone.0017288)
Ye, Y., Choi, J.-H. & Tang, H. RAPSearch: a fast protein similarity search tool for short reads. BMC Bioinform. 12, 159 (2011). (PMID: 10.1186/1471-2105-12-159)
Huson, D. H. & Weber, N. Microbial community analysis using MEGAN. Methods Enzymol. 531, 465–485 (2013). (PMID: 2406013310.1016/B978-0-12-407863-5.00021-6)
McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). (PMID: 20644199292850810.1101/gr.107524.110)
van der Auwera, G. A. et al. From fastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform. 43, 11.10.1–11.10.33 (2013).
معلومات مُعتمدة: MR/V022482/1 United Kingdom MRC_ Medical Research Council
سلسلة جزيئية: figshare 10.6084/m9.figshare.13739452
تواريخ الأحداث: Date Created: 20220526 Date Completed: 20220711 Latest Revision: 20221020
رمز التحديث: 20221213
DOI: 10.1038/s41559-022-01768-1
PMID: 35618819
قاعدة البيانات: MEDLINE
الوصف
تدمد:2397-334X
DOI:10.1038/s41559-022-01768-1