دورية أكاديمية

Tocopherol Accumulation and Temporal Expression Analysis of VTE1 and VTE5 Gene Family in Fruit of Two Contrasting Avocado Genotypes.

التفاصيل البيبلوغرافية
العنوان: Tocopherol Accumulation and Temporal Expression Analysis of VTE1 and VTE5 Gene Family in Fruit of Two Contrasting Avocado Genotypes.
المؤلفون: Valdez-Agramón RC; Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Guasave, Sinaloa, Mexico., Valdez-Morales M; Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Guasave, Sinaloa, Mexico., López-Meyer M; Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Guasave, Sinaloa, Mexico., Sandoval-Castro E; Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Guasave, Sinaloa, Mexico., Calderón-Vázquez CL; Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Guasave, Sinaloa, Mexico. ccalderon@ipn.mx.
المصدر: Plant foods for human nutrition (Dordrecht, Netherlands) [Plant Foods Hum Nutr] 2022 Jun; Vol. 77 (2), pp. 265-270. Date of Electronic Publication: 2022 May 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Country of Publication: Netherlands NLM ID: 8803554 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-9104 (Electronic) Linking ISSN: 09219668 NLM ISO Abbreviation: Plant Foods Hum Nutr Subsets: MEDLINE
أسماء مطبوعة: Publication: Dordrecht : Kluwer Academic
Original Publication: [Dordrecht] : Martinus Nijhoff, c1987-
مواضيع طبية MeSH: Persea*/genetics , Tocopherols*, Fruit/genetics ; Gene Expression Regulation, Plant ; Genotype ; Vitamin E/metabolism ; alpha-Tocopherol/metabolism
مستخلص: α-tocopherol is found in high concentrations in avocado fruit mesocarp, however, its accumulation and genetic control during maturation and ripening has not been elucidated. Based in the relevance of VTE1 and VTE5 genes in tocopherol biosynthesis and aiming to determine the association between tocopherol accumulation and expression of tocopherol biosynthetic genes, gene expression of VTE1 and VTE5 were evaluated through the time during three developmental stages: before harvest at 100, 160 and 220 days after flowering (DAF) and after harvest (220 DAF + 5) in two contrasting avocado genotypes (San Miguel and AVO40). San Miguel reached the highest levels at 220 DAF, whereas AVO40 increased α-tocopherol only after ripening (220 DAF + 5). A genome-wide search for VTE1 and VTE5 allowed to identify one and three genes, respectively. Both genotypes showed contrasting patterns of gene expression. Interestingly, AVO40 showed a highly positive correlation between α-tocopherol levels and gene expression of VTE1 and all VTE5 variants. On the other hand, San Miguel showed only a positive correlation between α-tocopherol level and VTE1gene expression.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Rizvi S, Raza ST, Ahmed F et al (2014) The role of vitamin E in human health and some diseases. Sultan Qaboos Univ Med J 14:e157–e165. (PMID: 247907363997530)
Lushchak VI, Semchuk NM (2012) Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors. Acta Physiol Plant 34:1607–1628. https://doi.org/10.1007/s11738-012-0988-9. (PMID: 10.1007/s11738-012-0988-9)
Valentin HE, Lincoln K, Moshiri F et al (2005) The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224. https://doi.org/10.1105/tpc.105.037077. (PMID: 10.1105/tpc.105.03707716361393)
Quadrana L, Almeida J, Otaiza SN et al (2013) Transcriptional regulation of tocopherol biosynthesis in tomato. Plant Mol Biol 81:309–325. https://doi.org/10.1007/s11103-012-0001-4. (PMID: 10.1007/s11103-012-0001-423247837)
Sattler SE, Cahoon EB, Coughlan SJ, DellaPenna D (2003) Characterization of tocopherol Cyclases from higher plants and Cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol 132:2184–2195. https://doi.org/10.1104/pp.103.024257. (PMID: 10.1104/pp.103.02425712913173181302)
Porfirova S, Bergmuller E, Tropf S et al (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci 99:12495–12500. https://doi.org/10.1073/pnas.182330899. (PMID: 10.1073/pnas.18233089912213958129473)
Georgiadou EC, Ntourou T, Goulas V et al (2015) Temporal analysis reveals a key role for VTE5 in vitamin E biosynthesis in olive fruit during on-tree development. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00871.
Ashworth VETM (2003) Microsatellite markers in avocado (Persea americana Mill.): genealogical relationships among cultivated avocado genotypes. J Hered 94:407–415. https://doi.org/10.1093/jhered/esg076. (PMID: 10.1093/jhered/esg07614557394)
Ochoa-Zarzosa A, Báez-Magaña M, Guzmán-Rodríguez JJ et al (2021) Bioactive molecules from native Mexican avocado fruit (Persea americana var. drymifolia): a review. Plant Foods Hum Nutr 76:133–142. https://doi.org/10.1007/s11130-021-00887-7. (PMID: 10.1007/s11130-021-00887-733704631)
Sandoval-Castro E, Peraza-Magallanes AY, Dodd RS et al (2021) Exploring genetic diversity of lowland avocado (Persea americana Mill.) as a genetic reservoir for breeding. Genet Resour Crop Evol 68:2757–2766. https://doi.org/10.1007/s10722-021-01238-w. (PMID: 10.1007/s10722-021-01238-w)
Calderón-Vázquez C, Durbin ML, Ashworth VETM et al (2013) Quantitative genetic analysis of three important nutritive traits in the fruit of avocado. J Am Soc Hortic Sci 138:283–289. https://doi.org/10.21273/JASHS.138.4.283. (PMID: 10.21273/JASHS.138.4.283)
Lu Q, Zhang Y, Wang Y et al (2009) California Hass avocado: profiling of carotenoids, tocopherol, fatty acid, and fat content during maturation and from different growing areas. J Agric Food Chem 57:10408–10413. https://doi.org/10.1021/jf901839h. (PMID: 10.1021/jf901839h198137132796540)
Peraza-Magallanes AY, Pereyra-Camacho MA, Sandoval-Castro E et al (2017) Exploring genetic variation, oil and α-tocopherol content in avocado (Persea americana) from northwestern Mexico. Genet Resour Crop Evol 64:443–449. https://doi.org/10.1007/s10722-016-0478-9. (PMID: 10.1007/s10722-016-0478-9)
Villa-Rodriguez JA, Yahia EM, González-León A et al (2020) Ripening of ‘Hass’ avocado mesocarp alters its phytochemical profile and the in vitro cytotoxic activity of its methanolic extracts. S Afr J Bot 128:1–8. https://doi.org/10.1016/j.sajb.2019.09.020. (PMID: 10.1016/j.sajb.2019.09.020)
Sánchez-Quezada V, Campos-Vega R, Loarca-Piña G (2021) Prediction of the physicochemical and nutraceutical characteristics of ‘Hass’ avocado seeds by correlating the physicochemical avocado fruit properties according to their ripening state. Plant Foods Hum Nutr 76:311–318. https://doi.org/10.1007/s11130-021-00900-z. (PMID: 10.1007/s11130-021-00900-z34264452)
Ramos-Aguilar AL, Ornelas-Paz J, Tapia-Vargas LM et al (2021) Comparative study on the phytochemical and nutrient composition of ripe fruit of Hass and Hass type avocado cultivars. J Food Compos Anal 97:103796. https://doi.org/10.1016/j.jfca.2020.103796. (PMID: 10.1016/j.jfca.2020.103796)
Vincent C, Mesa T, Munne-Bosch S (2020) Identification of a new variety of avocados (Persea americana Mill. CV. Bacon) with high vitamin E and impact of cold storage on tocochromanols composition. Antioxidants 9:403. https://doi.org/10.3390/antiox9050403.
Mohamed Mousa Y, Gerasopoulos D, Metzidakis I, Kiritsakis A (1996) Effect of altitude on fruit and oil quality characteristics of ‘Mastoides’ olives. J Sci Food Agric 71:345–350. https://doi.org/10.1002/(SICI)1097-0010(199607)71:3<345::AID-JSFA590>3.0.CO;2-T. (PMID: 10.1002/(SICI)1097-0010(199607)71:3<345::AID-JSFA590>3.0.CO;2-T)
Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748. https://doi.org/10.1016/j.jplph.2005.04.022. (PMID: 10.1016/j.jplph.2005.04.02216008098)
Georgiadou EC, Koubouris G, Goulas V et al (2019) Genotype-dependent regulation of vitamin E biosynthesis in olive fruits as revealed through metabolic and transcriptional profiles. Plant Biol 21:604–614. https://doi.org/10.1111/plb.12950. (PMID: 10.1111/plb.1295030556243)
Janiszowska W, Pennock JF (1976) The biochemistry of vitamin E in plants. Vitam Horm 34:77–105. https://doi.org/10.1016/S0083-6729(08)60073-4. (PMID: 10.1016/S0083-6729(08)60073-4798415)
Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. CRC Crit Rev Plant Sci 21:31–57. https://doi.org/10.1080/0735-260291044179. (PMID: 10.1080/0735-260291044179)
Rendón-Anaya M, Ibarra-Laclette E, Méndez-Bravo A et al (2019) The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proc Natl Acad Sci 116:17081–17089. https://doi.org/10.1073/pnas.1822129116. (PMID: 10.1073/pnas.1822129116313879756708331)
Prada F, Ayala-Diaz IM, Delgado W et al (2011) Effect of fruit ripening on content and chemical composition of oil from three oil palm cultivars (Elaeis guineensis Jacq.) grown in Colombia. J Agric Food Chem 59:10136–10142. https://doi.org/10.1021/jf201999d. (PMID: 10.1021/jf201999d21894914)
Singh RK, Ali SA, Nath P, Sane VA (2011) Activation of ethylene-responsive p-hydroxyphenylpyruvate dioxygenase leads to increased tocopherol levels during ripening in mango. J Exp Bot 62:3375–3385. https://doi.org/10.1093/jxb/err006. (PMID: 10.1093/jxb/err006214302903130165)
González Belo R, Nolasco S, Mateo C, Izquierdo N (2017) Dynamics of oil and tocopherol accumulation in sunflower grains and its impact on final oil quality. Eur J Agron 89:124–130. https://doi.org/10.1016/j.eja.2017.06.003. (PMID: 10.1016/j.eja.2017.06.003)
فهرسة مساهمة: Keywords: Avocado; Phytol kinase; Tocopherol cyclase; α-Tocopherol
المشرفين على المادة: 1406-18-4 (Vitamin E)
H4N855PNZ1 (alpha-Tocopherol)
R0ZB2556P8 (Tocopherols)
تواريخ الأحداث: Date Created: 20220526 Date Completed: 20220615 Latest Revision: 20220615
رمز التحديث: 20240628
DOI: 10.1007/s11130-022-00977-0
PMID: 35618894
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-9104
DOI:10.1007/s11130-022-00977-0