دورية أكاديمية

Transcriptomic analysis of the chorioallantois in equine premature placental separation.

التفاصيل البيبلوغرافية
العنوان: Transcriptomic analysis of the chorioallantois in equine premature placental separation.
المؤلفون: Murase H; Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA.; Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, Hokkaido, Japan., El-Sheikh Ali H; Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA.; Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt., Ruby RE; Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, Kentucky, USA., Scoggin KE; Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA., Ball BA; Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA.
المصدر: Equine veterinary journal [Equine Vet J] 2023 May; Vol. 55 (3), pp. 405-418. Date of Electronic Publication: 2022 Jun 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 0173320 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2042-3306 (Electronic) Linking ISSN: 04251644 NLM ISO Abbreviation: Equine Vet J Subsets: MEDLINE
أسماء مطبوعة: Publication: <2009- > : Hobokken, NJ : Wiley
Original Publication: Newmarket, Suffolk : Equine Veterinary Journal, Ltd
مواضيع طبية MeSH: Placenta* , Inflammation*/metabolism , Inflammation*/veterinary , Horse Diseases*/etiology, Animals ; Pregnancy ; Horses/genetics ; Female ; Transcriptome ; Retrospective Studies
مستخلص: Background: Equine premature placental separation (PPS) is poorly understood and represents an important risk factor for fetal/neonatal hypoxia.
Objectives: To examine transcriptomic changes in the chorioallantois (CA) from mares with clinical PPS compared with the CA from normal foaling mares. Differential gene expression was determined and gene ontology as well as molecular pathways related to PPS were characterised.
Study Design: Retrospective case: control study.
Methods: CA were collected from Thoroughbred mares with a clinical history of PPS (n = 33) and from control Thoroughbred mares (n = 4) with normal parturition for examination of transcriptional changes in the placenta associated with PPS. Transcriptomic changes in the villous CA near the cervical star were determined by Illumina® sequencing and subsequent bioinformatic analysis. PPS samples were divided by k-means clustering, and differentially expressed genes (DEGs) in each PPS cluster were identified by comparing to controls. Shared DEGs between PPS clusters were used for gene ontology analysis and pathway analysis.
Results: A total of 1204 DEGs were identified between PPS and control. Gene ontology revealed extracellular matrix (ECM) and cell adhesion, and pathway analysis revealed fatty acid, p-53, hypoxia and inflammation. Eleven key regulator genes of PPS including growth factors (IGF1, TGFB2, TGFB3), transcription factors (HIF1A, JUNB, SMAD3), and transmembrane receptors (FGFR1, TNFRSF1A, TYROBP) were also identified.
Main Limitations: The use of clinical history of PPS, in the absence of other criteria, may have led to misidentification of some cases as PPS.
Conclusions: Transcriptomic analysis indicated that changes in ECM and cell adhesion were important factors in equine PPS. Key predicted upstream events include genes associated with hypoxia, inflammation and growth factors related to the pathogenesis of equine PPS.
(© 2022 EVJ Ltd.)
References: McCue PM, Ferris RA. Parturition, dystocia and foal survival: a retrospective study of 1047 births. Equine Vet J. 2012;44(Suppl 41):22-5. https://doi.org/10.1111/j.2042-3306.2011.00476.x.
Laugier C, Foucher N, Sevin C, Leon A, Tapprest J. A 24-year retrospective study of equine abortion in Normandy (France). J Equine Vet Sci. 2011;31(3):116-23. https://doi.org/10.1016/j.jevs.2010.12.012.
Hong CB, Donahue JM, Giles RC Jr, Petrites-Murphy MB, Poonacha KB, Roberts AW, et al. Equine abortion and stillbirth in central Kentucky during 1988 and 1989 foaling seasons. J Vet Diagn Invest. 1993;5(4):560-6. https://doi.org/10.1177/104063879300500410.
Cohen ND, Carey VJ, Donahue JG, Seahorn JL, Harrison LR. Descriptive epidemiology of late-term abortions associated with the mare reproductive loss syndrome in Central Kentucky. J Vet Diagn Invest. 2003;15(3):295-7. https://doi.org/10.1177/104063870301500315.
Putnam MR, Bransby DI, Schumacher J, Boosinger TR, Bush L, Shelby RA, et al. Effects of the fungal endophyte Acremonium coenophialum in fescue on pregnant mares and foal viability. Am J Vet Res. 1991;52(12):2071-4.
Smith KC, Whitwell KE, Blunden AS, Bestbier ME, Scase TJ, Geraghty RJ, et al. Equine herpesvirus-1 abortion: atypical cases with lesions largely or wholly restricted to the placenta. Equine Vet J. 2004;36(1):79-82. https://doi.org/10.2746/0425164044864732.
Canisso I, Ball BA, Squires EL, Troedsson MHT. Comprehensive review on equine Placentitis. Proc Am Assoc Equine Pract. 2015;61:490-509.
Canisso IF, Ball BA, Scoggin KE, Squires EL, Williams NM, Troedsson MH. Alpha-fetoprotein is present in the fetal fluids and is increased in plasma of mares with experimentally induced ascending placentitis. Anim Reprod Sci. 2015;154:48-55. https://doi.org/10.1016/j.anireprosci.2014.12.019.
Njaa B. Kirkbride's diagnosis of abortion and neonatal loss in animals. Diagnosis of abortion and neonatal loss in animals. 4th ed. West Sussex, UK: Wiley-Blackwell; 2012.
Novakovic P, Detmer SE, Suleman M, Malgarin CM, MacPhee DJ, Harding JCS. Histologic changes associated with placental separation in gilts infected with porcine reproductive and respiratory syndrome virus. Vet Pathol. 2018;55(4):521-30. https://doi.org/10.1177/0300985818765067.
Downes KL, Grantz KL, Shenassa ED. Maternal, labor, delivery, and perinatal outcomes associated with placental abruption: a systematic review. Am J Perinatol. 2017;34(10):935-57. https://doi.org/10.1055/s-0037-1599149.
Ananth CV, Lavery JA, Vintzileos AM, Skupski DW, Varner M, Saade G, et al. Severe placental abruption: clinical definition and associations with maternal complications. Am J Obstet Gynecol. 2016;214(2):272.e1-9. https://doi.org/10.1016/j.ajog.2015.09.069.
Shah SG, Rashid M, Verma T, Ludbe M, Khade B, Gera PB, et al. Establishing a correlation between RIN and A260/280 along with the multivariate evaluation of factors affecting the quality of RNA in cryopreserved cancer bio-specimen. Cell Tissue Bank. 2019;20(4):489-99. https://doi.org/10.1007/s10561-019-09782-7.
Udvardi MK, Czechowski T, Scheible W-R. Eleven golden rules of quantitative RT-PCR. Plant Cell. 2008;20(7):1736-7. https://doi.org/10.1105/tpc.108.061143.
Bayega A, Wang YC, Oikonomopoulos S, Djambazian H, Fahiminiya S, Ragoussis J. Transcript profiling using long-read sequencing technologies. In: Raghavachari N, Garcia-Reyero N, editors. Gene expression analysis: methods and protocols. New York: Springer; 2018. p. 121-47.
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57. https://doi.org/10.1038/nprot.2008.211.
Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1-13. https://doi.org/10.1093/nar/gkn923.
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. https://doi.org/10.1093/nar/28.1.27.
Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, et al. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc. 2019;14(3):703-21. https://doi.org/10.1038/s41596-019-0128-8.
Kramer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30(4):523-30. https://doi.org/10.1093/bioinformatics/btt703.
El-Sheikh Ali H, Scoggin KE, Ruby R, Loynachan A, Boakari Y, Fernandes C, et al. Equine cervical remodeling during placentitis and the prepartum period: a transcriptomic approach. Reproduction. 2021;161(6):603-21. https://doi.org/10.1530/REP-21-0008.
El-Sheikh Ali H, Loux SC, Kennedy L, Scoggin KE, Dini P, Fedorka CE, et al. Transcriptomic analysis of equine chorioallantois reveals immune networks and molecular mechanisms involved in nocardioform placentitis. Vet Res. 2021;52(1):103. https://doi.org/10.1186/s13567-021-00972-4.
Ball BA, Scoggin KE, Troedsson MH, Squires EL. Characterization of prostaglandin E2 receptors (EP2, EP4) in the horse oviduct. Anim Reprod Sci. 2013;142(1-2):35-41. https://doi.org/10.1016/j.anireprosci.2013.07.009.
Harburger DS, Calderwood DA. Integrin signalling at a glance. J Cell Sci. 2009;122(Pt 2):159-63. https://doi.org/10.1242/jcs.018093.
Jarvelainen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev. 2009;61(2):198-223. https://doi.org/10.1124/pr.109.001289.
Boos A, Stelljes A, Kohtes J. Collagen types I, III and IV in the placentome and interplacentomal maternal and fetal tissues in normal cows and in cattle with retention of fetal membranes. Cells Tissues Organs. 2003;174(4):170-83. https://doi.org/10.1159/000072720.
Attupuram NM, Kumaresan A, Narayanan K, Kumar H. Cellular and molecular mechanisms involved in placental separation in the bovine: a review. Mol Reprod Dev. 2016;83(4):287-97. https://doi.org/10.1002/mrd.22635.
Hampson V, Liu D, Billett E, Kirk S. Amniotic membrane collagen content and type distribution in women with preterm premature rupture of the membranes in pregnancy. BJOG. 1997;104(9):1087-91. https://doi.org/10.1111/j.1471-0528.1997.tb12073.x.
Xu P, Alfaidy N, Challis JR. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in human placenta and fetal membranes in relation to preterm and term labor. J Clin Endocrinol Metab. 2002;87(3):1353-61. https://doi.org/10.1210/jcem.87.3.8320.
Moore RM, Mansour JM, Redline RW, Mercer BM, Moore JJ. The physiology of fetal membrane rupture: insight gained from the determination of physical properties. Placenta. 2006;27(11-12):1037-51. https://doi.org/10.1016/j.placenta.2006.01.002.
Strauss JF 3rd. Extracellular matrix dynamics and fetal membrane rupture. Reprod Sci. 2013;20(2):140-53. https://doi.org/10.1177/1933719111424454.
Franczyk M, Lopucki M, Stachowicz N, Morawska D, Kankofer M. Extracellular matrix proteins in healthy and retained placentas, comparing hemochorial and synepitheliochorial placentas. Placenta. 2017;50:19-24. https://doi.org/10.1016/j.placenta.2016.12.014.
Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929-58. https://doi.org/10.1146/annurev.biochem.77.032207.120833.
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Okscold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. https://doi.org/10.1126/science.1260419.
Mecham R, Mecham RP, SpringerLink. The Extracellular Matrix: An Overview. 1st ed. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011.
Meinert M, Malmström A, Tufvesson E, Westergren-Thorsson G, Petersen AC, Laurent C, et al. Labour induces increased concentrations of biglycan and hyaluronan in human fetal membranes. Placenta. 2007;28(5-6):482-6. https://doi.org/10.1016/j.placenta.2006.09.006.
Swan BC, Murthi P, Rajaraman G, Pathirage NA, Said JM, Ignjatovic V, et al. Decorin expression is decreased in human idiopathic fetal growth restriction. Reprod Fertil Dev. 2010;22(6):949-55. https://doi.org/10.1071/RD09240.
Murthi P, Faisal FA, Rajaraman G, Stevenson J, Ignjatovic V, Monagle PT, et al. Placental biglycan expression is decreased in human idiopathic fetal growth restriction. Placenta. 2010;31(8):712-7. https://doi.org/10.1016/j.placenta.2010.05.009.
Calmus ML, Macksoud EE, Tucker R, Iozzo RV, Lechner BE. A mouse model of spontaneous preterm birth based on the genetic ablation of biglycan and decorin. Reproduction. 2011;142(1):183-94. https://doi.org/10.1530/REP-10-0387.
Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827-39. https://doi.org/10.1161/01.RES.0000070112.80711.3D.
Dilly M, Hambruch N, Shenavai S, Schuler G, Froehlich R, Haeger J-D, et al. Expression of matrix metalloproteinase (MMP)-2, MMP-14 and tissue inhibitor of matrix metalloproteinase (TIMP)-2 during bovine placentation and at term with or without placental retention. Theriogenology. 2011;75(6):1104-14. https://doi.org/10.1016/j.theriogenology.2010.11.019.
Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem. 1989;180(3):487-502. https://doi.org/10.1111/j.1432-1033.1989.tb14673.x.
Poppenga RH, Mostrom MS, Haschek WM, Lock TF, Buck WB, Beasley VR. Mare agalactia, placental thickening, and high foal mortality associated with the grazing of tall fescue: a case report. Proc Am Assoc of Vet Lab Diagn. 1984;27:325-36.
Laderoute KR. The interaction between HIF-1 and AP-1 transcription factors in response to low oxygen. Semin Cell Dev Biol. 2005;16(4-5):502-13. https://doi.org/10.1016/j.semcdb.2005.03.005.
Moslehi R, Ambroggio X, Nagarajan V, Kumar A, Dzutsev A. Nucleotide excision repair/transcription gene defects in the fetus and impaired TFIIH-mediated function in transcription in placenta leading to preeclampsia. BMC Genomics. 2014;15:373. https://doi.org/10.1186/1471-2164-15-373.
Mata-Greenwood E, Liao WX, Wang W, Zheng J, Chen DB. Activation of AP-1 transcription factors differentiates FGF2 and vascular endothelial growth factor regulation of endothelial nitric-oxide synthase expression in placental artery endothelial cells. J Biol Chem. 2010;285(23):17348-58. https://doi.org/10.1074/jbc.M109.092791.
Verrecchia F, Vindevoghel L, Lechleider RJ, Uitto J, Roberts AB, Mauviel A. Smad3/AP-1 interactions control transcriptional responses to TGF-beta in a promoter-specific manner. Oncogene. 2001;20(26):3332-40. https://doi.org/10.1038/sj.onc.1204448.
Ignotz RA, Massague J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986;261(9):4337-45.
Nikitovic D, Zafiropoulos A, Katonis P, Tsatsakis A, Theocharis AD, Karamanos NK, et al. Transforming growth factor-beta as a key molecule triggering the expression of versican isoforms v0 and v1, hyaluronan synthase-2 and synthesis of hyaluronan in malignant osteosarcoma cells. IUBMB Life. 2006;58(1):47-53. https://doi.org/10.1080/15216540500531713.
Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem. 2001;276(20):17058-62. https://doi.org/10.1074/jbc.M100754200.
Nishi H, Nakada T, Hokamura M, Osakabe Y, Itokazu O, Huang LE, et al. Hypoxia-inducible factor-1 transactivates transforming growth factor-beta3 in trophoblast. Endocrinology. 2004;145(9):4113-8. https://doi.org/10.1210/en.2003-1639.
Schäffer L, Scheid A, Spielmann P, Breymann C, Zimmermann R, Meuli M, et al. Oxygen-regulated expression of TGF-β3, a growth factor involved in trophoblast differentiation. Placenta. 2003;24(10):941-50. https://doi.org/10.1016/s0143-4004(03)00166-8.
Patel J, Landers K, Mortimer RH, Richard K. Regulation of hypoxia inducible factors (HIF) in hypoxia and normoxia during placental development. Placenta. 2010;31(11):951-7. https://doi.org/10.1016/j.placenta.2010.08.008.
Caniggia I, Winter J, Lye SJ, Post M. Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta. 2000;21(Suppl A):S25-30. https://doi.org/10.1053/plac.1999.0522.
Asplund A, Stillemark-Billton P, Larsson E, Rydberg EK, Moses J, Hultén LM, et al. Hypoxic regulation of secreted proteoglycans in macrophages. Glycobiology. 2010;20(1):33-40. https://doi.org/10.1093/glycob/cwp139.
Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol. 1990;6:597-641. https://doi.org/10.1146/annurev.cb.06.110190.003121.
Ali LE, Salih MM, Elhassan EM, Mohmmed AA, Adam I. Placental growth factor, vascular endothelial growth factor, and hypoxia-inducible factor-1alpha in the placentas of women with pre-eclampsia. J Matern Fetal Neonatal Med. 2019;32(16):2628-32. https://doi.org/10.1080/14767058.2018.1443066.
Korkes HA, De Oliveira L, Sass N, Salahuddin S, Karumanchi SA, Rajakumar A. Relationship between hypoxia and downstream pathogenic pathways in preeclampsia. Hypertens Pregnancy. 2017;36(2):145-50. https://doi.org/10.1080/10641955.2016.1259627.
van Uitert M, Moerland PD, Enquobahrie DA, Laivuori H, van der Post JAM, Ris-Stalpers C, et al. Meta-analysis of placental transcriptome data identifies a novel molecular pathway related to preeclampsia. PLoS One. 2015;10(7):e0132468. https://doi.org/10.1371/journal.pone.0132468.
Galbiati S, Inversetti A, Causarano V, Stenirri S, Soriani N, Ambrosi A, et al. HIF1A and MIF as potential predictive mRNA biomarkers of pre-eclampsia: a longitudinal prospective study in high risk population. Clin Chem Lab Med. 2015;53(9):1339-47. https://doi.org/10.1515/cclm-2014-0745.
Tal R. The role of hypoxia and hypoxia-inducible factor-1alpha in preeclampsia pathogenesis. Biol Reprod. 2012;87(6):134. https://doi.org/10.1095/biolreprod.112.102723.
Stubert J, Schattenberg F, Richter DU, Dieterich M, Briese V. Trophoblastic progranulin expression is upregulated in cases of fetal growth restriction and preeclampsia. J Perinat Med. 2012;40(5):475-81. https://doi.org/10.1515/jpm-2011-0277.
Devisme L, Merlot B, Ego A, Houfflin-Debarge V, Deruelle P, Subtil D. A case-control study of placental lesions associated with pre-eclampsia. Int J Gynaecol Obstet. 2013;120(2):165-8. https://doi.org/10.1016/j.ijgo.2012.08.023.
Ducray JF, Naicker T, Moodley J. Pilot study of comparative placental morphometry in pre-eclamptic and normotensive pregnancies suggests possible maladaptations of the fetal component of the placenta. Eur J Obstet Gynecol Reprod Biol. 2011;156(1):29-34. https://doi.org/10.1016/j.ejogrb.2010.12.038.
Kim YH, O'Neill HM, Whitehead JP. Carboxypeptidase X-1 (CPX-1) is a secreted collagen-binding glycoprotein. Biochem Biophys Res Commun. 2015;468(4):894-9. https://doi.org/10.1016/j.bbrc.2015.11.053.
Weiner CP, Mason CW, Dong Y, Buhimschi IA, Swaan PW, Buhimschi CS. Human effector/initiator gene sets that regulate myometrial contractility during term and preterm labor. Am J Obstet Gynecol 2010;202(5):474 e1-20. doi:https://doi.org/10.1016/j.ajog.2010.02.034.
Bouchon A, Dietrich J, Colonna M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol. 2000;164(10):4991-5. https://doi.org/10.4049/jimmunol.164.10.4991.
Schorpp-Kistner M, Wang ZQ, Angel P, Wagner EF. JunB is essential for mammalian placentation. EMBO J. 1999;18(4):934-48. https://doi.org/10.1093/emboj/18.4.934.
Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16(1):3-34. https://doi.org/10.1210/edrv-16-1-3.
Fowden A. The insulin-like growth factors and feto-placental growth. Placenta. 2003;24(8-9):803-12. https://doi.org/10.1016/s0143-4004(03)00080-8.
Vadillo-Ortega F, Gonzalez-Avila G, Furth EE, Lei H, Muschel RJ, Stetler-Stevenson WG, et al. 92-kd type IV collagenase (matrix metalloproteinase-9) activity in human amniochorion increases with labor. Am J Pathol. 1995;146(1):148-56.
Fortunato SJ, Menon R, Lombardi SJ. Collagenolytic enzymes (gelatinases) and their inhibitors in human amniochorionic membrane. Am J Obstet Gynecol. 1997;177(4):731-41. https://doi.org/10.1016/s0002-9378(97)70260-6.
Maymon E, Romero R, Pacora P, Gervasi MT, Gomez R, Edwin SS, et al. Evidence of in vivo differential bioavailability of the active forms of matrix metalloproteinases 9 and 2 in parturition, spontaneous rupture of membranes, and intra-amniotic infection. Am J Obstet Gynecol. 2000;183(4):887-94. https://doi.org/10.1067/mob.2000.108878.
Streyl D, Kenngott R, Herbach N, Wanke R, Blum H, Sinowatz F, et al. Gene expression profiling of bovine peripartal placentomes: detection of molecular pathways potentially involved in the release of foetal membranes. Reproduction. 2012;143(1):85-105. https://doi.org/10.1530/REP-11-0204.
Dilly M, Hambruch N, Haeger JD, Pfarrer C. Epidermal growth factor (EGF) induces motility and upregulates MMP-9 and TIMP-1 in bovine trophoblast cells. Mol Reprod Dev. 2010;77(7):622-9. https://doi.org/10.1002/mrd.21197.
معلومات مُعتمدة: University of Kentucy; Albert G. Clay Endowment; Japan Racing Association
فهرسة مساهمة: Keywords: horse; placenta; premature placental separation; red bag; transcriptome
تواريخ الأحداث: Date Created: 20220527 Date Completed: 20230414 Latest Revision: 20230414
رمز التحديث: 20240628
DOI: 10.1111/evj.13602
PMID: 35622344
قاعدة البيانات: MEDLINE
الوصف
تدمد:2042-3306
DOI:10.1111/evj.13602