دورية أكاديمية

Notch signaling in malignant gliomas: supporting tumor growth and the vascular environment.

التفاصيل البيبلوغرافية
العنوان: Notch signaling in malignant gliomas: supporting tumor growth and the vascular environment.
المؤلفون: Kipper FC; Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA. fkipper@bidmc.harvard.edu.; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA. fkipper@bidmc.harvard.edu., Kieran MW; Day One Biopharmaceutical, VP Clinical Development, South San Francisco, CA, USA., Thomas A; Cooper Medical School of Rowan University and Cooper University Hospital, Camden, NJ, USA., Panigrahy D; Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
المصدر: Cancer metastasis reviews [Cancer Metastasis Rev] 2022 Sep; Vol. 41 (3), pp. 737-747. Date of Electronic Publication: 2022 May 27.
نوع المنشور: Journal Article; Review; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Country of Publication: Netherlands NLM ID: 8605731 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-7233 (Electronic) Linking ISSN: 01677659 NLM ISO Abbreviation: Cancer Metastasis Rev Subsets: MEDLINE
أسماء مطبوعة: Publication: Dordrecht, The Netherlands ; Boston, MA : Kluwer Academic
Original Publication: The Hague ; Boston : M. Nijhoff, c1982-
مواضيع طبية MeSH: Brain Neoplasms*/metabolism , Glioblastoma*/genetics , Glioma*/pathology, Cell Line, Tumor ; Cell Proliferation ; Humans ; Neoplastic Stem Cells/pathology ; Signal Transduction
مستخلص: Glioblastoma is the most malignant form of glioma, which is the most commonly occurring tumor of the central nervous system. Notch signaling in glioblastoma is considered to be a marker of an undifferentiated tumor cell state, associated with tumor stem cells. Notch is also known for facilitating tumor dormancy escape, recurrence and progression after treatment. Studies in vitro suggest that reducing, removing or blocking the expression of this gene triggers tumor cell differentiation, which shifts the phenotype away from stemness status and consequently facilitates treatment. In contrast, in the vasculature, Notch appears to also function as an important receptor that defines mature non-leaking vessels, and increasing its expression promotes tumor normalization in models of cancer in vivo. Failures in clinical trials with Notch inhibitors are potentially related to their opposing effects on the tumor versus the tumor vasculature, which points to the need for a greater understanding of this signaling pathway.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Siebel, C., & Lendahl, U. (2017). Notch signaling in development, tissue homeostasis, and disease. Physiological Reviews, 97(4), 1235–1294. https://doi.org/10.1152/physrev.00005.2017. (PMID: 10.1152/physrev.00005.201728794168)
Radtke, F., MacDonald, H. R., & Tacchini-Cottier, F. (2013). Regulation of innate and adaptive immunity by Notch. Nature Reviews Immunology, 13(6), 427–437. https://doi.org/10.1038/nri3445. (PMID: 10.1038/nri344523665520)
Demitrack, E. S., & Samuelson, L. C. (2016). Notch regulation of gastrointestinal stem cells. The Journal of Physiology, 594(17), 4791–4803. https://doi.org/10.1113/JP271667. (PMID: 10.1113/JP271667268480535009795)
Edwards, A., & Brennan, K. (2021). Notch signalling in breast development and cancer. Frontiers in Cell and Developmental Biology, 9, 1709. https://doi.org/10.3389/fcell.2021.692173. (PMID: 10.3389/fcell.2021.692173)
Iso, T., Hamamori, Y., & Kedes, L. (2003). Notch signaling in vascular development. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(4), 543–553. https://doi.org/10.1161/01.ATV.0000060892.81529.8F. (PMID: 10.1161/01.ATV.0000060892.81529.8F12615665)
Oishi, K., Kamakura, S., Isazawa, Y., Yoshimatsu, T., Kuida, K., Nakafuku, M., … Gotoh, Y. (2004). Notch promotes survival of neural precursor cells via mechanisms distinct from those regulating neurogenesis. Developmental Biology, 276(1), 172–184. https://doi.org/10.1016/j.ydbio.2004.08.039.
Takebe, N., Nguyen, D., & Yang, S. X. (2014). Targeting Notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacology & Therapeutics, 141(2), 140–149. https://doi.org/10.1016/j.pharmthera.2013.09.005. (PMID: 10.1016/j.pharmthera.2013.09.005)
Espinoza, I., & Miele, L. (2013). Notch inhibitors for cancer treatment. Pharmacology & Therapeutics, 139(2), 95–110. https://doi.org/10.1016/j.pharmthera.2013.02.003. (PMID: 10.1016/j.pharmthera.2013.02.003)
Lino, M. M., Merlo, A., & Boulay, J.-L. (2010). Notch signaling in glioblastoma: A developmental drug target? BMC Medicine, 8(1). https://doi.org/10.1186/1741-7015-8-72.
Handford, P. A., Korona, B., Suckling, R., Redfield, C., & Lea, S. M. (2018). Structural insights into Notch receptor-ligand interactions. In T. Borggrefe & B. D. Giaimo (Eds.), Molecular mechanisms of Notch signaling (Vol. 1066, pp. 33–46). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-89512-3_2.
Rebay, I., Fleming, R. J., Fehon, R. G., Cherbas, L., Cherbas, P., & Artavanis-Tsakonas, S. (1991). Specific EGF repeats of Notch mediate interactions with delta and serrate: Implications for notch as a multifunctional receptor. Cell, 67(4), 687–699. https://doi.org/10.1016/0092-8674(91)90064-6. (PMID: 10.1016/0092-8674(91)90064-61657403)
Sjöqvist, M., & Andersson, E. R. (2019). Do as I say, Not(ch) as I do: Lateral control of cell fate. Developmental Biology, 447(1), 58–70. https://doi.org/10.1016/j.ydbio.2017.09.032. (PMID: 10.1016/j.ydbio.2017.09.03228969930)
Fiúza, U.-M., & Arias, A. M. (2007). Cell and molecular biology of Notch. Journal of Endocrinology, 194(3), 459–474. https://doi.org/10.1677/JOE-07-0242. (PMID: 10.1677/JOE-07-024217761886)
Grochowski, C. M., Loomes, K. M., & Spinner, N. B. (2016). Jagged1 (JAG1): Structure, expression, and disease associations. Gene, 576(1 0 3), 381–384. https://doi.org/10.1016/j.gene.2015.10.065. (PMID: 10.1016/j.gene.2015.10.06526548814)
Dufraine, J., Funahashi, Y., & Kitajewski, J. (2008). Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene, 27(38), 5132–5137. https://doi.org/10.1038/onc.2008.227. (PMID: 10.1038/onc.2008.227187584823893692)
Andersen, P., Uosaki, H., Shenje, L. T., & Kwon, C. (2012). Non-canonical Notch signaling: Emerging role and mechanism. Trends in Cell Biology, 22(5), 257–265. https://doi.org/10.1016/j.tcb.2012.02.003. (PMID: 10.1016/j.tcb.2012.02.003223979473348455)
Ayaz, F., & Osborne, B. A. (2014). Non-canonical Notch signaling in cancer and immunity. Frontiers in Oncology, 4,. https://doi.org/10.3389/fonc.2014.00345.
D’Souza, B., Meloty-Kapella, L., & Weinmaster, G. (2010). Canonical and non-canonical Notch ligands. In Current topics in developmental biology (Vol. 92, pp. 73–129). Elsevier. https://doi.org/10.1016/S0070-2153(10)92003-6.
Kopan, R., & Ilagan Ma, X. G. (2009). The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell, 137(2), 216–233. https://doi.org/10.1016/j.cell.2009.03.045. (PMID: 10.1016/j.cell.2009.03.045193796902827930)
Phng, L.-K., & Gerhardt, H. (2009). Angiogenesis: A team effort coordinated by Notch. Developmental Cell, 16(2), 196–208. https://doi.org/10.1016/j.devcel.2009.01.015. (PMID: 10.1016/j.devcel.2009.01.01519217422)
Bayin, N. S., Frenster, J. D., Sen, R., Si, S., Modrek, A. S., Galifianakis, N., … Placantonakis, D. G. (2017). Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget, 8(39). https://doi.org/10.18632/oncotarget.18117.
Dontu, G., Jackson, K. W., McNicholas, E., Kawamura, M. J., Abdallah, W. M., & Wicha, M. S. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research, 6(6), R605. https://doi.org/10.1186/bcr920. (PMID: 10.1186/bcr920155358421064073)
Swaminathan, B., Youn, S.-W., Naiche, L. A., Du, J., Villa, S. R., Metz, J. B., … Kitajewski, J. K. (2022). Endothelial Notch signaling directly regulates the small GTPase RND1 to facilitate Notch suppression of endothelial migration. Scientific Reports, 12(1), 1655. https://doi.org/10.1038/s41598-022-05666-1.
Urbanek, K., Lesiak, M., Krakowian, D., Koryciak-Komarska, H., Likus, W., Czekaj, P., … Sieroń, A. L. (2017). Notch signaling pathway and gene expression profiles during early in vitro differentiation of liver-derived mesenchymal stromal cells to osteoblasts. Laboratory Investigation, 97(10), 1225–1234. https://doi.org/10.1038/labinvest.2017.60.
Hatakeyama, J., Sakamoto, S., & Kageyama, R. (2006). Hes1 and Hes5 regulate the development of the cranial and spinal nerve systems. Developmental Neuroscience, 28(1–2), 92–101. https://doi.org/10.1159/000090756. (PMID: 10.1159/00009075616508307)
Kageyama, R., Ohtsuka, T., Hatakeyama, J., & Ohsawa, R. (2005). Roles of bHLH genes in neural stem cell differentiation. Experimental Cell Research, 306(2), 343–348. https://doi.org/10.1016/j.yexcr.2005.03.015. (PMID: 10.1016/j.yexcr.2005.03.01515925590)
Teodorczyk, M., & Schmidt, M. H. H. (2015). Notching on cancer’s door: Notch signaling in brain tumors. Frontiers in Oncology, 4,. https://doi.org/10.3389/fonc.2014.00341.
Cuevas, I. C., Slocum, A. L., Jun, P., Costello, J. F., Bollen, A. W., Riggins, G. J., … Lal, A. (2005). Meningioma transcript profiles reveal deregulated Notch signaling pathway. Cancer Research, 65(12), 5070–5075. https://doi.org/10.1158/0008-5472.CAN-05-0240.
Papaioannou, M.-D., Djuric, U., Kao, J., Karimi, S., Zadeh, G., Aldape, K., & Diamandis, P. (2019). Proteomic analysis of meningiomas reveals clinically distinct molecular patterns. Neuro-Oncology, 21(8), 1028–1038. https://doi.org/10.1093/neuonc/noz084. (PMID: 10.1093/neuonc/noz084310772686682208)
Yokota, N., Mainprize, T. G., Taylor, M. D., Kohata, T., Loreto, M., Ueda, S., … Rutka, J. T. (2004). Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene, 23(19), 3444–3453. https://doi.org/10.1038/sj.onc.1207475.
Pan, W., Song, X.-Y., Hu, Q.-B., Zhang, M., & Xu, X.-H. (2019). TSP2 acts as a suppresser of cell invasion, migration and angiogenesis in medulloblastoma by inhibiting the Notch signaling pathway. Brain Research, 1718, 223–230. https://doi.org/10.1016/j.brainres.2019.05.004. (PMID: 10.1016/j.brainres.2019.05.00431063715)
Parmigiani, E., Taylor, V., & Giachino, C. (2020). Oncogenic and tumor-suppressive functions of NOTCH signaling in glioma. Cells, 9(10), 2304. https://doi.org/10.3390/cells9102304. (PMID: 10.3390/cells91023047602630)
Ludwig, K., & Kornblum, H. I. (2017). Molecular markers in glioma. Journal of neuro-oncology, 134(3), 505–512. https://doi.org/10.1007/s11060-017-2379-y. (PMID: 10.1007/s11060-017-2379-y282330835568999)
Wen, P. Y., Weller, M., Lee, E. Q., Alexander, B. M., Barnholtz-Sloan, J. S., Barthel, F. P., … van den Bent, M. J. (2020). Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncology, 22(8), 1073–1113. https://doi.org/10.1093/neuonc/noaa106.
Zhang, X.-P., Zheng, G., Zou, L., Liu, H.-L., Hou, L.-H., Zhou, P., … Chen, J.-Y. (2008). Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Molecular and Cellular Biochemistry, 307(1–2), 101–108. https://doi.org/10.1007/s11010-007-9589-0.
Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., … Aldape, K. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 9(3), 157–173. https://doi.org/10.1016/j.ccr.2006.02.019.
Kanamori, M., Kawaguchi, T., Nigro, J. M., Feuerstein, B. G., Berger, M. S., Miele, L., & Pieper, R. O. (2007). Contribution of Notch signaling activation to human glioblastoma multiforme. Journal of Neurosurgery, 106(3), 417–427. https://doi.org/10.3171/jns.2007.106.3.417. (PMID: 10.3171/jns.2007.106.3.41717367064)
Li, J., Cui, Y., Gao, G., Zhao, Z., Zhang, H., & Wang, X. (2011). Notch1 is an independent prognostic factor for patients with glioma. Journal of Surgical Oncology, 103(8), 813–817. https://doi.org/10.1002/jso.21851. (PMID: 10.1002/jso.2185121241024)
Purow, B. W., Haque, R. M., Noel, M. W., Su, Q., Burdick, M. J., Lee, J., … Fine, H. A. (2005). Expression of Notch-1 and its ligands, delta-like-1 and jagged-1, is critical for glioma cell survival and proliferation. Cancer Research, 65(6), 2353–2363. https://doi.org/10.1158/0008-5472.CAN-04-1890.
Suvà, M. L., & Tirosh, I. (2020). The glioma stem cell model in the era of single-cell genomics. Cancer Cell, 37(5), 630–636. https://doi.org/10.1016/j.ccell.2020.04.001. (PMID: 10.1016/j.ccell.2020.04.00132396858)
Calabrese, C., Poppleton, H., Kocak, M., Hogg, T. L., Fuller, C., Hamner, B., … Gilbertson, R. J. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11(1), 69–82. https://doi.org/10.1016/j.ccr.2006.11.020.
Zhu, T. S., Costello, M. A., Talsma, C. E., Flack, C. G., Crowley, J. G., Hamm, L. L., … Fan, X. (2011). Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Research, 71(18), 6061–6072. https://doi.org/10.1158/0008-5472.CAN-10-4269.
Fan, X., Khaki, L., Zhu, T. S., Soules, M. E., Talsma, C. E., Gul, N., … Eberhart, C. G. (2010). NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. STEM CELLS, 28(1), 5–16. https://doi.org/10.1002/stem.254.
Qiang, L., Wu, T., Zhang, H.-W., Lu, N., Hu, R., Wang, Y.-J., … Guo, Q.-L. (2012). HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death and Differentiation, 19(2), 284–294. https://doi.org/10.1038/cdd.2011.95.
Man, J., Yu, X., Huang, H., Zhou, W., Xiang, C., Huang, H., … Yu, J. S. (2018). Hypoxic induction of vasorin regulates Notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell, 22(1), 104-118.e6. https://doi.org/10.1016/j.stem.2017.10.005.
Cenciarelli, C., Marei, H. E., Zonfrillo, M., Casalbore, P., Felsani, A., Giannetti, S., … Mangiola, A. (2017). The interference of Notch1 target Hes1 affects cell growth, differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets. Oncotarget, 8(11), 17873–17886. https://doi.org/10.18632/oncotarget.15013.
Hai, L., Zhang, C., Li, T., Zhou, X., Liu, B., Li, S., … Yang, X. (2018). Notch1 is a prognostic factor that is distinctly activated in the classical and proneural subtype of glioblastoma and that promotes glioma cell survival via the NF-κB(p65) pathway. Cell Death & Disease, 9(2), 158. https://doi.org/10.1038/s41419-017-0119-z.
Han, N., Hu, G., Shi, L., Long, G., Yang, L., Xi, Q., … Zhang, M. (2017). Notch1 ablation radiosensitizes glioblastoma cells. Oncotarget, 8(50), 88059–88068. https://doi.org/10.18632/oncotarget.21409.
Wang, J., Wakeman, T. P., Lathia, J. D., Hjelmeland, A. B., Wang, X.-F., White, R. R., … Sullenger, B. A. (2009). Notch promotes radioresistance of glioma stem cells. Stem Cells, N/A-N/A. https://doi.org/10.1002/stem.261.
Yi, L., Zhou, X., Li, T., Liu, P., Hai, L., Tong, L., … Yang, X. (2019). Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. Journal of Experimental & Clinical Cancer Research : CR, 38, 339. https://doi.org/10.1186/s13046-019-1319-4.
Gagliardi, F., Narayanan, A., Reni, M., Franzin, A., Mazza, E., Boari, N., … Mortini, P. (2014). The role of CXCR4 in highly malignant human gliomas biology: Current knowledge and future directions. Glia, 62(7), 1015–1023. https://doi.org/10.1002/glia.22669.
Folkman, J. (2007). Angiogenesis: An organizing principle for drug discovery? Nature Reviews. Drug Discovery, 6(4), 273–286. https://doi.org/10.1038/nrd2115. (PMID: 10.1038/nrd211517396134)
Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438(7070), 932–936. https://doi.org/10.1038/nature04478. (PMID: 10.1038/nature0447816355210)
Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473(7347), 298–307. https://doi.org/10.1038/nature10144. (PMID: 10.1038/nature10144215938624049445)
Fonseca, C. G., Barbacena, P., & Franco, C. A. (2020). Endothelial cells on the move: Dynamics in vascular morphogenesis and disease. Vascular Biology, 2(1), H29–H43. https://doi.org/10.1530/VB-20-0007. (PMID: 10.1530/VB-20-0007329350777487603)
Yetkin-Arik, B., Vogels, I. M. C., Neyazi, N., van Duinen, V., Houtkooper, R. H., van Noorden, C. J. F., … Schlingemann, R. O. (2019). Endothelial tip cells in vitro are less glycolytic and have a more flexible response to metabolic stress than non-tip cells. Scientific Reports, 9(1), 10414. https://doi.org/10.1038/s41598-019-46503-2.
Hellström, M., Phng, L.-K., Hofmann, J. J., Wallgard, E., Coultas, L., Lindblom, P., … Betsholtz, C. (2007). Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 445(7129), 776–780. https://doi.org/10.1038/nature05571.
Blanco, R., & Gerhardt, H. (2013). VEGF and Notch in tip and stalk cell selection. Cold Spring Harbor Perspectives in Medicine, 3(1), a006569. https://doi.org/10.1101/cshperspect.a006569. (PMID: 10.1101/cshperspect.a006569230858473530037)
Suchting, S., Freitas, C., le Noble, F., Benedito, R., Breant, C., Duarte, A., & Eichmann, A. (2007). The Notch ligand delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proceedings of the National Academy of Sciences, 104(9), 3225–3230. https://doi.org/10.1073/pnas.0611177104. (PMID: 10.1073/pnas.0611177104)
Patel, N. S., Li, J.-L., Generali, D., Poulsom, R., Cranston, D. W., & Harris, A. L. (2005). Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Research, 65(19), 8690–8697. https://doi.org/10.1158/0008-5472.CAN-05-1208. (PMID: 10.1158/0008-5472.CAN-05-120816204037)
Thurston, G., Noguera-Troise, I., & Yancopoulos, G. D. (2007). The delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Reviews Cancer, 7(5), 327–331. https://doi.org/10.1038/nrc2130. (PMID: 10.1038/nrc213017457300)
Rehman, A. O., & Wang, C.-Y. (2006). Notch signaling in the regulation of tumor angiogenesis. Trends in Cell Biology, 16(6), 293–300. https://doi.org/10.1016/j.tcb.2006.04.003. (PMID: 10.1016/j.tcb.2006.04.00316697642)
Jakobsson, L., Franco, C. A., Bentley, K., Collins, R. T., Ponsioen, B., Aspalter, I. M., … Gerhardt, H. (2010). Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nature Cell Biology, 12(10), 943–953. https://doi.org/10.1038/ncb2103.
Mühleder, S., Fernández-Chacón, M., Garcia-Gonzalez, I., & Benedito, R. (2021). Endothelial sprouting, proliferation, or senescence: Tipping the balance from physiology to pathology. Cellular and Molecular Life Sciences: CMLS, 78(4), 1329–1354. https://doi.org/10.1007/s00018-020-03664-y. (PMID: 10.1007/s00018-020-03664-y33078209)
Siekmann, A. F., & Lawson, N. D. (2007). Notch signalling and the regulation of angiogenesis. Cell Adhesion & Migration, 1(2), 104–105. https://doi.org/10.4161/cam.1.2.4488. (PMID: 10.4161/cam.1.2.4488)
Xiu, M., Liu, Y., & Kuang, B. (2020). The oncogenic role of Jagged1/Notch signaling in cancer. Biomedicine & Pharmacotherapy, 129, 110416. https://doi.org/10.1016/j.biopha.2020.110416. (PMID: 10.1016/j.biopha.2020.110416)
Benedito, R., Roca, C., Sörensen, I., Adams, S., Gossler, A., Fruttiger, M., & Adams, R. H. (2009). The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell, 137(6), 1124–1135. https://doi.org/10.1016/j.cell.2009.03.025. (PMID: 10.1016/j.cell.2009.03.02519524514)
Kofler, N. M., Shawber, C. J., Kangsamaksin, T., Reed, H. O., Galatioto, J., & Kitajewski, J. (2011). Notch signaling in developmental and tumor angiogenesis. Genes & Cancer, 2(12), 1106–1116. https://doi.org/10.1177/1947601911423030. (PMID: 10.1177/1947601911423030)
Simons, M., Gordon, E., & Claesson-Welsh, L. (2016). Mechanisms and regulation of endothelial VEGF receptor signalling. Nature Reviews Molecular Cell Biology, 17(10), 611–625. https://doi.org/10.1038/nrm.2016.87. (PMID: 10.1038/nrm.2016.8727461391)
Hasan, S. S., Tsaryk, R., Lange, M., Wisniewski, L., Moore, J. C., Lawson, N. D., … Siekmann, A. F. (2017). Endothelial Notch signalling limits angiogenesis via control of artery formation. Nature Cell Biology, 19(8), 928–940. https://doi.org/10.1038/ncb3574.
Pitulescu, M. E., Schmidt, I., Giaimo, B. D., Antoine, T., Berkenfeld, F., Ferrante, F., … Adams, R. H. (2017). Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nature Cell Biology, 19(8), 915–927. https://doi.org/10.1038/ncb3555.
Hovinga, K. E., Shimizu, F., Wang, R., Panagiotakos, G., Van Der Heijden, M., Moayedpardazi, H., … Tabar, V. (2010). Inhibition of Notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. STEM CELLS, 28(6), 1019–1029. https://doi.org/10.1002/stem.429.
Borovski, T., Verhoeff, J. J. C., ten Cate, R., Cameron, K., de Vries, N. A., van Tellingen, O., … Sprick, M. R. (2009). Tumor microvasculature supports proliferation and expansion of glioma-propagating cells. International Journal of Cancer, 125(5), 1222–1230. https://doi.org/10.1002/ijc.24408.
Fessler, E., Borovski, T., & Medema, J. P. (2015). Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF. Molecular Cancer, 14(1), 157. https://doi.org/10.1186/s12943-015-0420-3. (PMID: 10.1186/s12943-015-0420-3262821294539660)
Nandhu, M. S., Hu, B., Cole, S. E., Erdreich-Epstein, A., Rodriguez-Gil, D. J., & Viapiano, M. S. (2014). Novel paracrine modulation of Notch–DLL4 signaling by fibulin-3 promotes angiogenesis in high-grade gliomas. Cancer Research, 74(19), 5435–5448. https://doi.org/10.1158/0008-5472.CAN-14-0685. (PMID: 10.1158/0008-5472.CAN-14-0685251394404184948)
Hai, L., Liu, P., Yu, S., Yi, L., Tao, Z., Zhang, C., … Yang, X. (2018). Jagged1 is clinically prognostic and promotes invasion of glioma-initiating cells by activating NF-κB(p65) signaling. Cellular Physiology and Biochemistry, 51(6), 2925–2937. https://doi.org/10.1159/000496044.
Qiu, X., Wang, C., You, N., Chen, B., Wang, X., Chen, Y., & Lin, Z. (2014). High Jagged1 expression is associated with poor outcome in primary glioblastoma. Medical Oncology, 32(1), 341. https://doi.org/10.1007/s12032-014-0341-9. (PMID: 10.1007/s12032-014-0341-925424769)
Jubb, A. M., Browning, L., Campo, L., Turley, H., Steers, G., Thurston, G., … Ansorge, O. (2012). Expression of vascular Notch ligands delta-like 4 and jagged-1 in glioblastoma. Histopathology, 60(5), 740–747. https://doi.org/10.1111/j.1365-2559.2011.04138.x.
Qiu, X., Chen, L., Wang, C., Lin, Z., Chen, B., You, N., … Wang, X. (2016). The vascular Notch Ligands delta-like ligand 4 (DLL4) and Jagged1 (JAG1) have opposing correlations with microvascularization but a uniform prognostic effect in primary glioblastoma: A preliminary study. World Neurosurgery, 88, 447–458. https://doi.org/10.1016/j.wneu.2015.10.058.
Kimberly, W. T., LaVoie, M. J., Ostaszewski, B. L., Ye, W., Wolfe, M. S., & Selkoe, D. J. (2003). γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. Proceedings of the National Academy of Sciences, 100(11), 6382–6387. https://doi.org/10.1073/pnas.1037392100. (PMID: 10.1073/pnas.1037392100)
Francis, R., McGrath, G., Zhang, J., Ruddy, D. A., Sym, M., Apfeld, J., … Curtis, D. (2002). aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Developmental Cell, 3(1), 85–97. https://doi.org/10.1016/s1534-5807(02)00189-2.
Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T., & Selkoe, D. J. (1999). Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature, 398(6727), 513–517. https://doi.org/10.1038/19077. (PMID: 10.1038/1907710206644)
Crystal, A. S., Morais, V. A., Pierson, T. C., Pijak, D. S., Carlin, D., Lee, V.M.-Y., & Doms, R. W. (2003). Membrane topology of γ-secretase component PEN-2. Journal of Biological Chemistry, 278(22), 20117–20123. https://doi.org/10.1074/jbc.M213107200. (PMID: 10.1074/jbc.M21310720012639958)
De Strooper, B. (2003). Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron, 38(1), 9–12. https://doi.org/10.1016/s0896-6273(03)00205-8. (PMID: 10.1016/s0896-6273(03)00205-812691659)
Li, T., Li, Y.-M., Ahn, K., Price, D. L., Sisodia, S. S., & Wong, P. C. (2011). Increased expression of PS1 is sufficient to elevate the level and activity of γ-secretase in vivo. PLoS ONE, 6(11), e28179. https://doi.org/10.1371/journal.pone.0028179. (PMID: 10.1371/journal.pone.0028179221405373226664)
Xia, W. (2019). γ-Secretase and its modulators: Twenty years and beyond. Neuroscience letters, 701, 162–169. https://doi.org/10.1016/j.neulet.2019.02.011. (PMID: 10.1016/j.neulet.2019.02.011307636507008970)
Tong, G., Wang, J.-S., Sverdlov, O., Huang, S.-P., Slemmon, R., Croop, R., … Dockens, R. C. (2012). Multicenter, randomized, double-blind, placebo-controlled, single-ascending dose study of the oral γ-secretase inhibitor BMS-708163 (Avagacestat): Tolerability profile, pharmacokinetic parameters, and pharmacodynamic markers. Clinical Therapeutics, 34(3), 654–667. https://doi.org/10.1016/j.clinthera.2012.01.022.
Chan, D., Kaplan, J., Gordon, G., & Desai, J. (2021). Activity of the gamma secretase inhibitor AL101 in desmoid tumors: A case report of 2 adult cases. Current Oncology, 28(5), 3659–3667. https://doi.org/10.3390/curroncol28050312. (PMID: 10.3390/curroncol28050312345906108482204)
Azaro, A., Baldini, C., Rodon, J., Soria, J.-C., Yuen, E., Lithio, A., … Massard, C. (2021). Phase 1 study of 2 high dose intensity schedules of the pan-Notch inhibitor crenigacestat (LY3039478) in combination with prednisone in patients with advanced or metastatic cancer. Investigational New Drugs, 39(1), 193–201. https://doi.org/10.1007/s10637-020-00944-z.
Habets, R. A., de Bock, C. E., Serneels, L., Lodewijckx, I., Verbeke, D., Nittner, D., … de Strooper, B. (2019). Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.aau6246.
Wu, G., Sankaranarayanan, S., Wong, J., Tugusheva, K., Michener, M. S., Shi, X., … Savage, M. J. (2012). Characterization of plasma β-secretase (BACE1) activity and soluble amyloid precursor proteins as potential biomarkers for Alzheimer’s disease. Journal of Neuroscience Research, 90(12), 2247–2258. https://doi.org/10.1002/jnr.23122.
Wei, P., Walls, M., Qiu, M., Ding, R., Denlinger, R. H., Wong, A., … Smeal, T. (2010). Evaluation of selective γ-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Molecular Cancer Therapeutics, 9(6), 1618–1628. https://doi.org/10.1158/1535-7163.MCT-10-0034.
Feng, J., Wang, J., Liu, Q., Li, J., Zhang, Q., Zhuang, Z., … Gao, H. (2019). DAPT, a γ-secretase inhibitor, suppresses tumorigenesis, and progression of growth hormone-producing adenomas by targeting Notch signaling. Frontiers in Oncology, 9, 809. https://doi.org/10.3389/fonc.2019.00809.
Aktas, C. C., Zeybek, N. D., & Piskin, A. K. (2015). In vitro effects of phenytoin and DAPT on MDA-MB-231 breast cancer cells. Acta Biochimica Et Biophysica Sinica, 47(9), 680–686. https://doi.org/10.1093/abbs/gmv066. (PMID: 10.1093/abbs/gmv06626206582)
Luo, X., Tan, H., Zhou, Y., Xiao, T., Wang, C., & Li, Y. (2013). Notch1 signaling is involved in regulating Foxp3 expression in T-ALL. Cancer Cell International, 13(1), 34. https://doi.org/10.1186/1475-2867-13-34. (PMID: 10.1186/1475-2867-13-34235783653663738)
Keyghobadi, F., Mehdipour, M., Nekoukar, V., Firouzi, J., Kheimeh, A., Nobakht Lahrood, F., … Ebrahimi, M. (2020). Long-term inhibition of Notch in A-375 melanoma cells enhances tumor growth through the enhancement of AXIN1, CSNK2A3, and CEBPA2 as intermediate genes in Wnt and Notch pathways. Frontiers in Oncology, 10, 531. https://doi.org/10.3389/fonc.2020.00531.
Gilbert, C. A., Daou, M.-C., Moser, R. P., & Ross, A. H. (2010). γ-Secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Research, 70(17), 6870–6879. https://doi.org/10.1158/0008-5472.CAN-10-1378. (PMID: 10.1158/0008-5472.CAN-10-1378207363772932884)
Grudzien, P., Lo, S., Albain, K. S., Robinson, P., Rajan, P., Strack, P. R., … Foreman, K. E. (2010). Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Research, 30(10), 3853–3867.
Messersmith, W. A., Shapiro, G. I., Cleary, J. M., Jimeno, A., Dasari, A., Huang, B., … LoRusso, P. M. (2015). A phase I, dose-finding study in patients with advanced solid malignancies of the oral γ-secretase inhibitor PF-03084014. Clinical Cancer Research, 21(1), 60–67. https://doi.org/10.1158/1078-0432.CCR-14-0607.
Milano, J., McKay, J., Dagenais, C., Foster-Brown, L., Pognan, F., Gadient, R., … Ciaccio, P. J. (2004). Modulation of Notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicological Sciences, 82(1), 341–358. https://doi.org/10.1093/toxsci/kfh254.
Kummar, S., O’Sullivan Coyne, G., Do, K. T., Turkbey, B., Meltzer, P. S., Polley, E., … Chen, A. P. (2017). Clinical activity of the γ-secretase inhibitor PF-03084014 in adults with desmoid tumors (aggressive fibromatosis). Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 35(14), 1561–1569. https://doi.org/10.1200/JCO.2016.71.1994.
Villalobos, V. M., Hall, F., Jimeno, A., Gore, L., Kern, K., Cesari, R., … Messersmith, W. (2018). Long-term follow-up of desmoid fibromatosis treated with PF-03084014, an oral gamma secretase inhibitor. Annals of Surgical Oncology, 25(3), 768–775. https://doi.org/10.1245/s10434-017-6082-1.
SpringWorks Therapeutics, Inc. (2021). A randomized, double-blind, placebo-controlled, phase 3 trial of nirogacestat versus placebo in adult patients with progressing desmoid tumors/aggressive fibromatosis (DT/AF) (clinical trial registration no. NCT03785964). clinicaltrials.gov. Retrieved from https://clinicaltrials.gov/ct2/show/NCT03785964.
Ferrarotto, R., Ho, A. L., Wirth, L. J., Dekel, E., Walker, R. W., & Vergara-Silva, A. L. (2019). ACCURACY: Phase (P) 2 trial of AL101, a pan-Notch inhibitor, in patients (pts) with recurrent/metastatic (R/M) adenoid cystic carcinoma (ACC) with Notch activating mutations (Notchact mut). Journal of Clinical Oncology, 37(15_suppl), TPS6098. https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS6098. (PMID: 10.1200/JCO.2019.37.15_suppl.TPS6098)
Fleisher, A. S., Raman, R., Siemers, E. R., Becerra, L., Clark, C. M., Dean, R. A., … Thal, L. J. (2008). Phase II safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer’s disease. Archives of neurology, 65(8), 1031–1038. https://doi.org/10.1001/archneur.65.8.1031.
Siemers, E., Skinner, M., Dean, R. A., Gonzales, C., Satterwhite, J., Farlow, M., … May, P. C. (2005). Safety, tolerability, and changes in amyloid β concentrations after administration of a γ-secretase inhibitor in volunteers. Clinical Neuropharmacology, 28(3), 126–132. https://doi.org/10.1097/01.wnf.0000167360.27670.29.
Strosberg, J. R., Yeatman, T., Weber, J., Coppola, D., Schell, M. J., Han, G., … Sullivan, D. (2012). A phase II study of RO4929097 in metastatic colorectal cancer. European Journal of Cancer, 48(7), 997–1003. https://doi.org/10.1016/j.ejca.2012.02.056.
Tolcher, A. W., Messersmith, W. A., Mikulski, S. M., Papadopoulos, K. P., Kwak, E. L., Gibbon, D. G., … Wheler, J. J. (2012). Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. Journal of Clinical Oncology, 30(19), 2348–2353. https://doi.org/10.1200/JCO.2011.36.8282.
Doody, R. S., Raman, R., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., … Mohs, R. (2013). A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. New England Journal of Medicine, 369(4), 341–350. https://doi.org/10.1056/NEJMoa1210951.
El-Khoueiry, A. B., Desai, J., Iyer, S. P., Gadgeel, S. M., Ramalingam, S. S., Horn, L., … Bedard, P. L. (2018). A phase I study of AL101, a pan-NOTCH inhibitor, in patients (pts) with locally advanced or metastatic solid tumors. Journal of Clinical Oncology, 36(15_suppl), 2515–2515. https://doi.org/10.1200/JCO.2018.36.15_suppl.2515.
Massard, C., Azaro, A., Soria, J.-C., Lassen, U., Le Tourneau, C., Sarker, D., … Rodon, J. (2018). First-in-human study of LY3039478, an oral Notch signaling inhibitor in advanced or metastatic cancer. Annals of Oncology, 29(9), 1911–1917. https://doi.org/10.1093/annonc/mdy244.
De Jesus-Acosta, A., Laheru, D., Maitra, A., Arcaroli, J., Rudek, M. A., Dasari, A., … Messersmith, W. (2014). A phase II study of the gamma secretase inhibitor RO4929097 in patients with previously treated metastatic pancreatic adenocarcinoma. Investigational New Drugs, 32(4), 739–745. https://doi.org/10.1007/s10637-014-0083-8.
Diaz-Padilla, I., Wilson, M. K., Clarke, B. A., Hirte, H. W., Welch, S. A., Mackay, H. J., … Oza, A. M. (2015). A phase II study of single-agent RO4929097, a gamma-secretase inhibitor of Notch signaling, in patients with recurrent platinum-resistant epithelial ovarian cancer: A study of the Princess Margaret, Chicago and California phase II consortia. Gynecologic Oncology, 137(2), 216–222. https://doi.org/10.1016/j.ygyno.2015.03.005.
Lee, S. M., Moon, J., Redman, B. G., Chidiac, T., Flaherty, L. E., Zha, Y., … Margolin, K. A. (2015). A phase II study of RO4929097 gamma-secretase inhibitor in metastatic melanoma: SWOG 0933. Cancer, 121(3), 432–440. https://doi.org/10.1002/cncr.29055.
Peereboom, D. M., Ye, X., Mikkelsen, T., Lesser, G. J., Lieberman, F. S., Robins, H. I., … Grossman, S. A. (2021). A phase II and pharmacodynamic trial of RO4929097 for patients with recurrent/progressive glioblastoma. Neurosurgery, 88(2), 246–251. https://doi.org/10.1093/neuros/nyaa412.
Wong, G. T., Manfra, D., Poulet, F. M., Zhang, Q., Josien, H., Bara, T., … Parker, E. M. (2004). Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation *. Journal of Biological Chemistry, 279(13), 12876–12882. https://doi.org/10.1074/jbc.M311652200.
Saito, N., Fu, J., Zheng, S., Yao, J., Wang, S., Liu, D. D., … Koul, D. (2014). A high Notch pathway activation predicts response to γ secretase inhibitors in proneural subtype of glioma tumor-initiating cells. STEM CELLS, 32(1), 301–312. https://doi.org/10.1002/stem.1528.
Pan, E., Supko, J. G., Kaley, T. J., Butowski, N. A., Cloughesy, T., Jung, J., … Park, D. M. (2016). Phase I study of RO4929097 with bevacizumab in patients with recurrent malignant glioma. Journal of Neuro-Oncology, 130(3), 571–579. https://doi.org/10.1007/s11060-016-2263-1.
Xu, R., Shimizu, F., Hovinga, K., Beal, K., Karimi, S., Droms, L., … Omuro, A. (2016). Molecular and clinical effects of Notch inhibition in glioma patients: A phase 0/I trial. Clinical Cancer Research, 22(19), 4786–4796. https://doi.org/10.1158/1078-0432.CCR-16-0048.
فهرسة مساهمة: Keywords: Angiogenesis; Cancer stem cell; Glioblastoma; Notch pathway
تواريخ الأحداث: Date Created: 20220527 Date Completed: 20220915 Latest Revision: 20220929
رمز التحديث: 20240628
DOI: 10.1007/s10555-022-10041-7
PMID: 35624227
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-7233
DOI:10.1007/s10555-022-10041-7