دورية أكاديمية

Prevalence and Dynamics of SARS-CoV-2 Antibodies in the Population of St. Petersburg, Russia.

التفاصيل البيبلوغرافية
العنوان: Prevalence and Dynamics of SARS-CoV-2 Antibodies in the Population of St. Petersburg, Russia.
المؤلفون: Parshina EV; Nephrology and Dialysis Department, Saint Petersburg State University Hospital, 154, Fontanka Emb., Saint-Petersburg, 198103, Russian Federation. e.parshina@spbu.ru., Zulkarnaev AB; Surgical Department of Transplantology and Dialysis, M.F. Vladimirsky Moscow Regional Research Clinical Institute, 61/2, Shchepkina Str., Moscow, 129110, Russian Federation., Tolkach AD; Nephrology and Dialysis Department, Saint Petersburg State University Hospital, 154, Fontanka Emb., Saint-Petersburg, 198103, Russian Federation., Ivanov AV; Human Genetics Department, Saint Petersburg State University Hospital, 154, Fontanka Emb., Saint-Petersburg, 198103, Russian Federation., Kislyy PN; Polyclinic Department №4, Saint Petersburg State University Hospital, 154, Fontanka Emb., Saint-Petersburg, 198103, Russian Federation.
المصدر: Journal of epidemiology and global health [J Epidemiol Glob Health] 2022 Jun; Vol. 12 (2), pp. 206-213. Date of Electronic Publication: 2022 May 30.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Switzerland NLM ID: 101592084 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2210-6014 (Electronic) Linking ISSN: 22106006 NLM ISO Abbreviation: J Epidemiol Glob Health Subsets: MEDLINE
أسماء مطبوعة: Publication: 2021- : [Cham] : Springer
Original Publication: Amsterdam : Elsevier, [2011]-
مواضيع طبية MeSH: COVID-19*/diagnosis , COVID-19*/epidemiology , SARS-CoV-2*, Antibodies, Viral ; Communicable Disease Control ; Humans ; Immunoglobulin A ; Immunoglobulin G ; Immunoglobulin M ; Prevalence ; Retrospective Studies
مستخلص: Background: The aim of the study was to assess the prevalence of seropositive status for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-IgA, -IgM, and -IgG; its dynamics in connection with restrictive measures during the coronavirus disease (COVID-19) pandemic; and the quantitative dynamics of antibody levels in the population of St. Petersburg, Russia.
Methods: From May to November 2020, a retrospective analysis of Saint Petersburg State University Hospital laboratory database was performed. The database included 158,283 test results of 87,067 patients for SARS-CoV-2 detection by polymerase chain reaction (PCR) and antibody detection of SARS-CoV-2-IgA, -IgM, and -IgG. The dynamics of antibody level was assessed using R v.3.6.3.
Results: The introduction of a universal lockdown was effective in containing the spread of COVID-19. The proportion of seropositive patients gradually decreased; approximately 50% of these patients remained seropositive for IgM after 3-4 weeks; for IgG, by follow-up week 22; and for IgA, by week 12. The maximum decrease in IgG and IgA was observed 3-4 months and 2 months after the detection of the seropositive status, respectively.
Conclusions: The epidemiological study of post-infection immunity to COVID-19 demonstrates significant differences in the dynamics of IgA, IgM, and IgG seropositivity and in PCR test results over time, which is linked to the introduction of restrictive measures. Both the proportion of seropositive patients and the level of all antibodies decreased in terms of the dynamics, and only approximately half of these patients remained IgG-positive 6 months post-infection.
(© 2022. The Author(s).)
References: www.stopcoronavirus.rf [Internet]. An official Internet resource for informing the population about the coronavirus (COVID-19). https://xn--80aesfpebagmfblc0a.xn--p1ai/.
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48. https://doi.org/10.18637/jss.v067.i01 . (PMID: 10.18637/jss.v067.i01)
Kuznetsova A, Brockhoff P, Christensen R. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82(13):1–26. https://doi.org/10.18637/jss.v082.i13 . (PMID: 10.18637/jss.v082.i13)
Venables WN, Ripley BD. Modern applied statistics with S. 4th ed. New York: Springer; 2002. p. 498. (PMID: 10.1007/978-0-387-21706-2)
Perico L, Tomasoni S, Peracchi T, et al. COVID-19 and lombardy: TESTing the impact of the first wave of the pandemic. EBioMedicine. 2020;61: 103069. https://doi.org/10.1016/j.ebiom.2020.103069 . (PMID: 10.1016/j.ebiom.2020.103069331303967581396)
Pollán M, Pérez-Gómez B, Pastor-Barriuso R, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020;396(10250):535–44. https://doi.org/10.1016/S0140-6736(20)31483-5 . (PMID: 10.1016/S0140-6736(20)31483-5326453477336131)
Stringhini S, Wisniak A, Piumatti G, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. Lancet. 2020;396(10247):313–9. https://doi.org/10.1016/S0140-6736(20)31304-0 . (PMID: 10.1016/S0140-6736(20)31304-0325346267289564)
Wells PM, Doores KJ, Couvreur S, et al. Estimates of the rate of infection and asymptomatic COVID-19 disease in a population sample from SE England. J Infect. 2020;81(6):931–6. https://doi.org/10.1016/j.jinf.2020.10.011 . (PMID: 10.1016/j.jinf.2020.10.011330686287557299)
Pathela P, Crawley A, Weiss D, et al. Seroprevalence of severe acute respiratory syndrome coronavirus 2 following the largest initial epidemic wave in the United States: findings from New York City, 13 May to 21 July 2020. J Infect Dis. 2021;224(2):196–206. https://doi.org/10.1093/infdis/jiab200 . (PMID: 10.1093/infdis/jiab20033836067)
Papageorge NW, Zahn MV, Belot M, et al. Socio-demographic factors associated with self-protecting behavior during the Covid-19 pandemic. J Popul Econ. 2021;34:691–738. https://doi.org/10.1007/s00148-020-00818-x . (PMID: 10.1007/s00148-020-00818-x334625297807230)
Hornik R, Kikut A, Jesch E, et al. Association of COVID-19 misinformation with face mask wearing and social distancing in a nationally representative US sample. Health Commun. 2021;36(1):6–14. https://doi.org/10.1080/10410236.2020.1847437 . (PMID: 10.1080/10410236.2020.184743733225745)
Ji T, Chen HL, Xu J, et al. Lockdown contained the spread of 2019 novel coronavirus disease in Huangshi city, China: early epidemiological findings. Clin Infect Dis. 2020;71(6):1454–60. https://doi.org/10.1093/cid/ciaa390 . (PMID: 10.1093/cid/ciaa39032255183)
Lau H, Khosrawipour V, Kocbach P, et al. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J Travel Med. 2020;27(3):taaa037. https://doi.org/10.1093/jtm/taaa037 . (PMID: 10.1093/jtm/taaa03732181488)
Pan A, Liu L, Wang C, et al. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA. 2020;323(19):1915–23. https://doi.org/10.1001/jama.2020.6130 . (PMID: 10.1001/jama.2020.613032275295)
Wells CR, Sah P, Moghadas SM, et al. Impact of international travel and border control measures on the global spread of the novel 2019 coronavirus outbreak. Proc Natl Acad Sci USA. 2020;117(13):7504–9. https://doi.org/10.1073/pnas.2002616117 . (PMID: 10.1073/pnas.2002616117321700177132249)
Burns J, Movsisyan A, Stratil JM, et al. Travel-related control measures to contain the COVID-19 pandemic: a rapid review. Cochrane Database Syst Rev. 2020;10:CD013717. https://doi.org/10.1002/14651858.CD013717 . (PMID: 10.1002/14651858.CD01371733502002)
Mahmoudi J, Xiong C. How social distancing, mobility, and preventive policies affect COVID-19 outcomes: big data-driven evidence from the District of Columbia-Maryland-Virginia (DMV) megaregion. PLoS ONE. 2022;17(2): e0263820. https://doi.org/10.1371/journal.pone.0263820 . (PMID: 10.1371/journal.pone.0263820351760318853552)
Nussbaumer-Streit B, Mayr V, Dobrescu AI, et al. Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review. Cochrane Database Syst Rev. 2020;9(9):CD013574. https://doi.org/10.1002/14651858.CD013574.pub2 . (PMID: 10.1002/14651858.CD013574.pub233959956)
Quilty BJ, Clifford S, Hellewell J, et al. Quarantine and testing strategies in contact tracing for SARS-CoV-2: a modelling study. Lancet Public Health. 2021;6(3):e175–83. https://doi.org/10.1016/S2468-2667(20)30308-X.Erratum.In:LancetPublicHealth.2021Jun;6(6):e364 . (PMID: 10.1016/S2468-2667(20)30308-X.Erratum.In:LancetPublicHealth.2021Jun;6(6):e364334846447826085)
Seow J, Graham C, Merrick B, et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol. 2020;5(12):1598–607. https://doi.org/10.1038/s41564-020-00813-8 . (PMID: 10.1038/s41564-020-00813-8331066747610833)
Iyer A, Jones F, Nodoushani A, et al. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol. 2020;5(52):abe0367. https://doi.org/10.1126/sciimmunol.abe0367 . (PMID: 10.1126/sciimmunol.abe0367)
Ivanov A, Semenova E. Long-term monitoring of the development and extinction of IgA and IgG responses to SARS-CoV-2 infection. J Med Virol. 2021;93(10):5953–60. https://doi.org/10.1002/jmv.27166 . (PMID: 10.1002/jmv.27166341853128426671)
Figueiredo-Campos P, Blankenhaus B, Mota C, et al. Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset. Eur J Immunol. 2020;50(12):2025–40. https://doi.org/10.1002/eji.202048970 . (PMID: 10.1002/eji.202048970330840297756220)
Zervou F, Louie P, Stachel A, et al. SARS-CoV-2 antibodies: IgA correlates with severity of disease in early COVID-19 infection. J Med Virol. 2021;93(9):5409–15. https://doi.org/10.1002/jmv.27058 . (PMID: 10.1002/jmv.27058339322998242647)
Padoan A, Sciacovelli L, Basso D, et al. IgA-Ab response to spike glycoprotein of SARS-CoV-2 in patients with COVID-19: a longitudinal study. Clin Chim Acta. 2020;507:164–6. https://doi.org/10.1016/j.cca.2020.04.026 . (PMID: 10.1016/j.cca.2020.04.026323439487194886)
Ma H, Zhao D, Zeng W, et al. Decline of SARS-CoV-2-specific IgG, IgM and IgA in convalescent COVID-19 patients within 100 days after hospital discharge. China Life Sci. 2021;64(3):482–5. https://doi.org/10.1007/s11427-020-1805-0 . (PMID: 10.1007/s11427-020-1805-0)
Perreault J, Tremblay T, Fournier M, et al. Waning of SARS-CoV-2 RBD antibodies in longitudinal convalescent plasma samples within 4 months after symptom onset. Blood. 2020;136(22):2588–91. https://doi.org/10.1182/blood.2020008367 . (PMID: 10.1182/blood.202000836733001206)
Alfego D, Sullivan A, Poirier B, et al. A population-based analysis of the longevity of SARS-CoV-2 antibody seropositivity in the United States. EClinicalMedicine. 2021;36: 100902. https://doi.org/10.1016/j.eclinm.2021.100902 . (PMID: 10.1016/j.eclinm.2021.100902340565688143650)
Chia W, Zhu F, Ong S, et al. Dynamics of SARS-CoV-2 neutralizing antibody responses and duration of immunity: a longitudinal study. Lancet Microbe. 2021;2(6):e240–9. https://doi.org/10.1016/S2666-5247(21)00025-2 . (PMID: 10.1016/S2666-5247(21)00025-2337787927987301)
فهرسة مساهمة: Keywords: Antibody; COVID-19; Quarantine; SARS-CoV-2; Seropositivity; Seroprevalence
المشرفين على المادة: 0 (Antibodies, Viral)
0 (Immunoglobulin A)
0 (Immunoglobulin G)
0 (Immunoglobulin M)
تواريخ الأحداث: Date Created: 20220531 Date Completed: 20220622 Latest Revision: 20220909
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9148942
DOI: 10.1007/s44197-022-00041-9
PMID: 35635641
قاعدة البيانات: MEDLINE
الوصف
تدمد:2210-6014
DOI:10.1007/s44197-022-00041-9