دورية أكاديمية

Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants.

التفاصيل البيبلوغرافية
العنوان: Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants.
المؤلفون: Arizti-Sanz J; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA., Bradley A; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA., Zhang YB; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA., Boehm CK; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Department of Molecular Biology, Princeton University, Princeton, NJ, USA., Freije CA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA., Grunberg ME; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Department of Molecular Biology, Princeton University, Princeton, NJ, USA., Kosoko-Thoroddsen TF; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA., Welch NL; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Program in Virology, Harvard Medical School, Boston, MA, USA., Pillai PP; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA., Mantena S; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA., Kim G; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Department of Molecular Biology, Princeton University, Princeton, NJ, USA., Uwanibe JN; African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria.; Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria., John OG; Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria., Eromon PE; African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria., Kocher G; Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Frederick, MD, USA., Gross R; Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Frederick, MD, USA., Lee JS; Biotechnology Cores Facility Branch, Division of Scientific Resources, National Center for Emerging and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA., Hensley LE; Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Frederick, MD, USA., MacInnis BL; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Harvard T.H. Chan School of Public Health, Boston, MA, USA., Johnson J; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA., Springer M; Department of Systems Biology, Harvard Medical School, Boston, MA, USA.; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA., Happi CT; African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria.; Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.; Harvard T.H. Chan School of Public Health, Boston, MA, USA., Sabeti PC; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.; Harvard T.H. Chan School of Public Health, Boston, MA, USA.; Howard Hughes Medical Institute, Chevy Chase, MD, USA., Myhrvold C; Department of Molecular Biology, Princeton University, Princeton, NJ, USA. cmyhrvol@princeton.edu.
المصدر: Nature biomedical engineering [Nat Biomed Eng] 2022 Aug; Vol. 6 (8), pp. 932-943. Date of Electronic Publication: 2022 May 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: England NLM ID: 101696896 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2157-846X (Electronic) Linking ISSN: 2157846X NLM ISO Abbreviation: Nat Biomed Eng Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Springer Nature
Original Publication: [London] : Macmillan Publishers Limited, [2016]-
مواضيع طبية MeSH: COVID-19*/diagnosis , COVID-19*/virology , Nucleic Acids*, COVID-19 Testing ; CRISPR-Associated Proteins ; Humans ; SARS-CoV-2/classification ; SARS-CoV-2/genetics ; SARS-CoV-2/isolation & purification
مستخلص: The widespread transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) call for rapid nucleic acid diagnostics that are easy to use outside of centralized clinical laboratories. Here we report the development and performance benchmarking of Cas13-based nucleic acid assays leveraging lyophilised reagents and fast sample inactivation at ambient temperature. The assays, which we named SHINEv.2 (for 'streamlined highlighting of infections to navigate epidemics, version 2'), simplify the previously reported RNA-extraction-free SHINEv.1 technology by eliminating heating steps and the need for cold storage of the reagents. SHINEv.2 detected SARS-CoV-2 in nasopharyngeal samples with 90.5% sensitivity and 100% specificity (benchmarked against the reverse transcription quantitative polymerase chain reaction) in less than 90 min, using lateral-flow technology and incubation in a heat block at 37 °C. SHINEv.2 also allows for the visual discrimination of the Alpha, Beta, Gamma, Delta and Omicron SARS-CoV-2 variants, and can be run without performance losses by using body heat. Accurate, easy-to-use and equipment-free nucleic acid assays could facilitate wider testing for SARS-CoV-2 and other pathogens in point-of-care and at-home settings.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Update of: medRxiv. 2021 Nov 02:2021.11.01.21265764. doi: 10.1101/2021.11.01.21265764. (PMID: 34751276)
Comment in: Nat Biomed Eng. 2022 Aug;6(8):925-927. doi: 10.1038/s41551-022-00926-x. (PMID: 35986182)
References: Summers, J. et al. Potential lessons from the Taiwan and New Zealand health responses to the COVID-19 pandemic. Lancet Reg. Health West Pac. 4, 100044 (2020). (PMID: 34013216757718410.1016/j.lanwpc.2020.100044)
Pavelka, M. et al. The impact of population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia. Science 372, 635–641 (2021). (PMID: 33758017813942610.1126/science.abf9648)
Walensky, R. P. & del Rio, C. From mitigation to containment of the COVID-19 pandemic. JAMA 323, 1889–1890 (2020). (PMID: 3230195910.1001/jama.2020.6572)
Mina, M. J. & Andersen, K. G. COVID-19 testing: one size does not fit all. Science 371, 126–127 (2021). (PMID: 3341421010.1126/science.abe9187)
Mögling, R. et al. Delayed laboratory response to COVID-19 caused by molecular diagnostic contamination. Emerg. Infect. Dis. 26, 1944–1946 (2020). (PMID: 32433015739243710.3201/eid2608.201843)
McKay, S. L. et al. Performance evaluation of serial SARS-CoV-2 rapid antigen testing during a nursing home outbreak. Ann. Intern. Med. 174, 945–951 (2021). (PMID: 3390079110.7326/M21-0422)
Ferguson, J. et al. Validation testing to determine the sensitivity of lateral flow testing for asymptomatic SARS-CoV-2 detection in low prevalence settings: testing frequency and public health messaging is key. PLoS Biol. 19, e3001216 (2021). (PMID: 33914730811264310.1371/journal.pbio.3001216)
van Kampen, J. J. A. et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat. Commun. 12, 267 (2021). (PMID: 33431879780172910.1038/s41467-020-20568-4)
Pray, I. W. et al. Performance of an antigen-based test for asymptomatic and symptomatic SARS-CoV-2 testing at two university campuses - Wisconsin, September–October 2020. MMWR Morb. Mortal. Wkly Rep. 69, 1642–1647 (2021). (PMID: 33382679919190510.15585/mmwr.mm695152a3)
Rabe, B. A. & Cepko, C. SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proc. Natl Acad. Sci. USA 117, 24450–24458 (2020). (PMID: 32900935753367710.1073/pnas.2011221117)
Thi, V. L. D. et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci. Transl. Med. 12, eabc7075 (2020). (PMID: 10.1126/scitranslmed.abc7075)
LUCIRA HEALTH. Lucira TM COVID-19 Test Kit Instructions for Use (2021) https://www.fda.gov/media/147494/download.
Land, K. J., Boeras, D. I., Chen, X.-S., Ramsay, A. R. & Peeling, R. W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 4, 46–54 (2019). (PMID: 3054609310.1038/s41564-018-0295-3)
Gootenberg, J. S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442 (2017). (PMID: 28408723552619810.1126/science.aam9321)
Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018). (PMID: 29449511662890310.1126/science.aar6245)
Li, S.-Y. et al. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 4, 20 (2018). (PMID: 29707234591329910.1038/s41421-018-0028-z)
Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444 (2018). (PMID: 29449508596172710.1126/science.aaq0179)
Myhrvold, C. et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 360, 444–448 (2018). (PMID: 29700266619705610.1126/science.aas8836)
Fozouni, P. et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 184, 323–333.e9 (2021). (PMID: 3330695910.1016/j.cell.2020.12.001)
Liu, T. Y. et al. Accelerated RNA detection using tandem CRISPR nucleases. Nat. Chem. Biol. 17, 982–988 (2021). (PMID: 3435426210.1038/s41589-021-00842-2)
Joung, J. et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing. N. Engl. J. Med. 383, 1492–1494 (2020). (PMID: 3293706210.1056/NEJMc2026172)
Arizti-Sanz, J. et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat. Commun. 11, 5921 (2020). (PMID: 33219225768014510.1038/s41467-020-19097-x)
Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021). (PMID: 34075212816783410.1038/s41579-021-00573-0)
Konings, F. et al. SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nat. Microbiol. 6, 821–823 (2021). (PMID: 3410865410.1038/s41564-021-00932-w)
Volz, E. et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 593, 266–269 (2021). (PMID: 3376744710.1038/s41586-021-03470-x)
Lemieux, J. E. et al. Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events. Science 371, eabe3261 (2021). (PMID: 3330368610.1126/science.abe3261)
Borges, V. et al. Tracking SARS-CoV-2 lineage B.1.1.7 dissemination: insights from nationwide spike gene target failure (SGTF) and spike gene late detection (SGTL) data, Portugal, week 49 2020 to week 3 2021. Euro Surveill. 26, 1–6 (2021). (PMID: 10.2807/1560-7917.ES.2021.26.10.2100130)
Vogels, C. B. F. et al. Multiplex qPCR discriminates variants of concern to enhance global surveillance of SARS-CoV-2. PLoS Biol. 19, e3001236 (2021). (PMID: 33961632813377310.1371/journal.pbio.3001236)
Brito, A. F. et al. Global disparities in SARS-CoV-2 genomic surveillance. Preprint at medRxiv https://doi.org/10.1101/2021.08.21.21262393 (2021).
Ackerman, C. M. et al. Massively multiplexed nucleic acid detection with Cas13. Nature 582, 277–282 (2020). (PMID: 32349121733242310.1038/s41586-020-2279-8)
Chakraborty, D., Agrawal, A. & Maiti, S. Rapid identification and tracking of SARS-CoV-2 variants of concern. Lancet 397, 1346–1347 (2021). (PMID: 33765408798486210.1016/S0140-6736(21)00470-0)
de Puig, H. et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Sci. Adv. 7, eabh2944 (2021). (PMID: 34362739834621710.1126/sciadv.abh2944)
Casati, B. et al. ADESSO: a rapid, adaptable and sensitive Cas13-based COVID-19 diagnostic platform. Preprint at medRxiv https://doi.org/10.1101/2021.06.17.21258371 (2021).
Metsky, H. C. et al. Designing sensitive viral diagnostics with machine learning. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01213-5 (2022).
Qian, J. et al. An enhanced isothermal amplification assay for viral detection. Nat. Commun. 11, 5920 (2020). (PMID: 33219228767944610.1038/s41467-020-19258-y)
Policy for Coronavirus Disease-2019 Tests During the Public Health Emergency (U.S. Food and Drug Administration, 2021). https://www.fda.gov/media/135659/download.
Perchetti, G. A., Huang, M.-L., Mills, M. G., Jerome, K. R. & Greninger, A. L. Analytical sensitivity of the Abbott BinaxNOW COVID-19 Ag card. J. Clin. Microbiol. 59, e02880-20 (2021). (PMID: 33310764810672910.1128/JCM.02880-20)
Xun, G., Lane, S. T., Petrov, V. A., Pepa, B. E. & Zhao, H. A rapid, accurate, scalable, and portable testing system for COVID-19 diagnosis. Nat. Commun. 12, 2905 (2021). (PMID: 34006857813173510.1038/s41467-021-23185-x)
CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel (Centers for Disease Control and Prevention, 2021). https://www.fda.gov/media/134922/download.
Yang, Q. et al. Just 2% of SARS-CoV-2-positive individuals carry 90% of the virus circulating in communities. Proc. Natl Acad. Sci. USA 118, 1–6 (2021).
Teyssou, E. et al. The Delta SARS-CoV-2 variant has a higher viral load than the Beta and the historical variants in nasopharyngeal samples from newly diagnosed COVID-19 patients. J. Infect. 83, e1–e3 (2021). (PMID: 34419559837525010.1016/j.jinf.2021.08.027)
Pollock, N. R. et al. Performance and implementation evaluation of the Abbott BinaxNOW rapid antigen test in a high-throughput drive-through community testing site in Massachusetts. J. Clin. Microbiol. https://doi.org/10.1128/JCM.00083-21 (2022).
Pollock, N. R. et al. Performance and operational evaluation of the Access Bio Carestart rapid antigen test in a high-throughput drive-through community testing site in Massachusetts. Open Forum Infect. Dis. https://doi.org/10.1093/ofid/ofab243 (2021).
Allan-Blitz, L.-T. & Klausner, J. D. A real-world comparison of SARS-CoV-2 rapid antigen vs. polymerase chain reaction testing in Florida. J. Clin. Microbiol. https://doi.org/10.1128/JCM.01107-21 (2021).
Okoye, N. C. et al. Performance characteristics of BinaxNOW COVID-19 antigen card for screening asymptomatic individuals in a university setting. J. Clin. Microbiol. 59, 1–8 (2021). (PMID: 10.1128/JCM.03282-20)
Hodcroft, E. B. CoVariants: SARS-CoV-2 Mutations and Variants of Interest https://covariants.org/ (2021).
Planas, D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596, 276–280 (2021). (PMID: 3423777310.1038/s41586-021-03777-9)
Viana, R. et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 603, 679–686 (2022). https://doi.org/10.1038/s41586-022-04411-y.
Emmadi, R. et al. Molecular methods and platforms for infectious diseases testing. A review of FDA-approved and cleared assays. J. Mol. Diagn. 13, 583–604 (2011). (PMID: 21871973319405110.1016/j.jmoldx.2011.05.011)
Crannell, Z. A., Rohrman, B. & Richards-Kortum, R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS ONE 9, e112146 (2014). (PMID: 25372030422115610.1371/journal.pone.0112146)
Ghosh, P. et al. Evaluation of recombinase-based isothermal amplification assays for point-of-need detection of SARS-CoV-2 in resource-limited settings. Int. J. Infect. Dis. 114, 105–111 (2022). (PMID: 3475839210.1016/j.ijid.2021.11.007)
Yuan, C.-Q. et al. Universal and naked-eye gene detection platform based on CRISPR/Cas12a/13a system. Anal. Chem. https://doi.org/10.1021/acs.analchem.9b05597 (2020).
Carter, J. G. et al. Ultrarapid detection of SARS-CoV-2 RNA using a reverse transcription-free exponential amplification reaction, RTF-EXPAR. Proc. Natl Acad. Sci. USA 118, 1–6 (2021). (PMID: 10.1073/pnas.2100347118)
Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob. Chall. 1, 33–46 (2017). (PMID: 31565258660737510.1002/gch2.1018)
Shu, Y. & McCauley, J. GISAID: global initiative on sharing all influenza data – from vision to reality. Euro Surveill. 22, 30494 (2017). (PMID: 28382917538810110.2807/1560-7917.ES.2017.22.13.30494)
BinaxNOW COVID-19 Antigen Self TEST (U.S. Food and Drug Administration, 2021). https://www.fda.gov/media/147254/download.
CareStart COVID-19 Antigen Rapid Diagnostic Test for the Detection of SARS-CoV-2 Antigen (U.S. Food and Drug Administration, 2021). https://www.fda.gov/media/142919/download.
معلومات مُعتمدة: R01 GM120122 United States GM NIGMS NIH HHS; U01 AI151812 United States AI NIAID NIH HHS; U54 HG007480 United States HG NHGRI NIH HHS; United States HHMI Howard Hughes Medical Institute
المشرفين على المادة: 0 (CRISPR-Associated Proteins)
0 (Nucleic Acids)
SCR Organism: SARS-CoV-2 variants
تواريخ الأحداث: Date Created: 20220531 Date Completed: 20220823 Latest Revision: 20240718
رمز التحديث: 20240719
مُعرف محوري في PubMed: PMC9398993
DOI: 10.1038/s41551-022-00889-z
PMID: 35637389
قاعدة البيانات: MEDLINE
الوصف
تدمد:2157-846X
DOI:10.1038/s41551-022-00889-z