دورية أكاديمية

19 F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of E. coli Ribonucleotide Reductase.

التفاصيل البيبلوغرافية
العنوان: 19 F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of E. coli Ribonucleotide Reductase.
المؤلفون: Meyer A; Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany., Kehl A; Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany., Cui C; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States., Reichardt FAK; Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany., Hecker F; Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany., Funk LM; Department of structural dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.; Department of Molecular Enzymology, Georg-August University, 37077 Göttingen, Germany., Ghosh MK; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States., Pan KT; Research group bioanalytical mass spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.; Bioanalytics, University Medical Center, 37075 Göttingen, Germany., Urlaub H; Research group bioanalytical mass spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.; Bioanalytics, University Medical Center, 37075 Göttingen, Germany., Tittmann K; Department of structural dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.; Department of Molecular Enzymology, Georg-August University, 37077 Göttingen, Germany., Stubbe J; Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States., Bennati M; Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.; Department of Chemistry, Georg-August University, 37077 Göttingen, Germany.
المصدر: Journal of the American Chemical Society [J Am Chem Soc] 2022 Jun 29; Vol. 144 (25), pp. 11270-11282. Date of Electronic Publication: 2022 Jun 02.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 7503056 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-5126 (Electronic) Linking ISSN: 00027863 NLM ISO Abbreviation: J Am Chem Soc Subsets: MEDLINE
أسماء مطبوعة: Publication: Washington, DC : American Chemical Society
Original Publication: Easton, Pa. [etc.]
مواضيع طبية MeSH: Ribonucleotide Reductases*/chemistry, Electron Spin Resonance Spectroscopy ; Electrons ; Escherichia coli/metabolism ; Fluorine ; Models, Molecular ; Oxidation-Reduction ; Protons ; Tyrosine/chemistry
مستخلص: Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, thereby playing a key role in DNA replication and repair. Escherichia coli class Ia RNR is an α 2 β 2 enzyme complex that uses a reversible multistep radical transfer (RT) over 32 Å across its two subunits, α and β, to initiate, using its metallo-cofactor in β 2 , nucleotide reduction in α 2 . Each step is proposed to involve a distinct proton-coupled electron-transfer (PCET) process. An unresolved step is the RT involving Y 356 (β) and Y 731 (α) across the α/β interface. Using 2,3,5-F 3 Y 1222 with 3,5-F 2 Y 7312 , GDP (substrate) and TTP (allosteric effector), a Y 356 intermediate was trapped and its identity was verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz pulse electron-electron double resonance spectroscopies. 94 GHz 19 F electron-nuclear double resonance spectroscopy allowed measuring the interspin distances between Y 356 and the 19 F nuclei of 3,5-F 2 Y 731 in this RNR mutant. Similar experiments with the double mutant E 52 Q/F 3 Y 1222 were carried out for comparison to the recently published cryo-EM structure of a holo RNR complex. For both mutant combinations, the distance measurements reveal two conformations of 3,5-F 2 Y 731 . Remarkably, one conformation is consistent with 3,5-F 2 Y 731 within the H-bond distance to Y 356 , whereas the second one is consistent with the conformation observed in the cryo-EM structure. The observations unexpectedly suggest the possibility of a colinear PCET, in which electron and proton are transferred from the same donor to the same acceptor between Y 356 and Y 731 . The results highlight the important role of state-of-the-art EPR spectroscopy to decipher this mechanism.
References: Science. 2020 Apr 24;368(6489):424-427. (PMID: 32217749)
Structure. 2012 Aug 8;20(8):1374-83. (PMID: 22727814)
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21046-51. (PMID: 22160671)
J Phys Chem B. 2021 Jan 14;125(1):128-136. (PMID: 33378205)
Chem Sci. 2015 Aug 1;6(8):4519-4524. (PMID: 26504513)
J Am Chem Soc. 2011 Nov 16;133(45):18420-32. (PMID: 21967342)
Chem Sci. 2016 Mar 1;7(3):2170-2178. (PMID: 29899944)
J Am Chem Soc. 2017 Feb 8;139(5):2090-2101. (PMID: 28052668)
J Am Chem Soc. 2018 Nov 21;140(46):15744-15752. (PMID: 30347141)
Biochemistry. 2017 Feb 14;56(6):856-868. (PMID: 28103007)
J Am Chem Soc. 2015 Jan 14;137(1):289-98. (PMID: 25516424)
Annu Rev Biochem. 2009;78:673-99. (PMID: 19344235)
J Am Chem Soc. 2014 Mar 26;136(12):4515-24. (PMID: 24601637)
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2833-2837. (PMID: 29711097)
J Magn Reson. 2021 Dec;333:107091. (PMID: 34749036)
J Magn Reson. 2003 Sep;164(1):78-83. (PMID: 12932459)
J Am Chem Soc. 2021 May 19;143(19):7237-7241. (PMID: 33957040)
Cancer Res. 1990 Jul 15;50(14):4417-22. (PMID: 2364394)
J Am Chem Soc. 2003 Dec 10;125(49):14988-9. (PMID: 14653724)
Elife. 2016 Jan 12;5:e07141. (PMID: 26754917)
J Am Chem Soc. 2016 Oct 19;138(41):13706-13716. (PMID: 28068088)
J Am Chem Soc. 2011 Nov 30;133(47):19040-3. (PMID: 21988482)
Methods Enzymol. 1978;51:227-37. (PMID: 357894)
Nature. 1994 Aug 18;370(6490):533-9. (PMID: 8052308)
J Mol Biol. 1993 Jul 5;232(1):123-64. (PMID: 8331655)
Elife. 2022 Feb 09;11:. (PMID: 35137690)
J Am Chem Soc. 2020 Aug 12;142(32):13768-13778. (PMID: 32631052)
iScience. 2020 Aug 21;23(8):101366. (PMID: 32738611)
J Am Chem Soc. 2021 Apr 28;143(16):6054-6059. (PMID: 33856807)
Proc Natl Acad Sci U S A. 2021 Jul 6;118(27):. (PMID: 34215694)
Curr Cancer Drug Targets. 2006 Aug;6(5):409-31. (PMID: 16918309)
Sci Adv. 2018 Aug 24;4(8):eaat5218. (PMID: 30151430)
J Am Chem Soc. 2009 Jul 29;131(29):10092-106. (PMID: 19621964)
Chem Rev. 2003 Jun;103(6):2167-201. (PMID: 12797828)
J Am Chem Soc. 2005 Nov 2;127(43):15014-5. (PMID: 16248626)
J Am Chem Soc. 2003 Jul 9;125(27):8318-29. (PMID: 12837104)
J Am Chem Soc. 2015 Jul 22;137(28):8860-71. (PMID: 26110700)
Nature. 1986 May 22-28;321(6068):439-41. (PMID: 3012359)
Angew Chem Int Ed Engl. 2020 Jan 2;59(1):373-379. (PMID: 31539187)
J Magn Reson. 2005 Feb;172(2):279-95. (PMID: 15649755)
Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9815-20. (PMID: 21628579)
J Am Chem Soc. 2011 Oct 12;133(40):15942-5. (PMID: 21913683)
J Am Chem Soc. 2021 Sep 1;143(34):13463-13472. (PMID: 34423635)
J Am Chem Soc. 2021 Jan 13;143(1):176-183. (PMID: 33353307)
J Am Chem Soc. 2017 Mar 1;139(8):2994-3004. (PMID: 28171730)
Annu Rev Biochem. 2006;75:681-706. (PMID: 16756507)
J Med Chem. 1991 Jun;34(6):1879-84. (PMID: 2061926)
Crit Rev Biochem Mol Biol. 2012 Jan-Feb;47(1):50-63. (PMID: 22050358)
J Magn Reson. 2019 Jun;303:17-27. (PMID: 30991287)
J Magn Reson. 2006 Jan;178(1):42-55. (PMID: 16188474)
Annu Rev Biochem. 2020 Jun 20;89:45-75. (PMID: 32569524)
Biochim Biophys Acta. 1995 Mar 15;1247(2):284-92. (PMID: 7696321)
J Magn Reson. 2011 Dec;213(2):316-25. (PMID: 22152351)
Biochemistry. 2017 Jul 18;56(28):3647-3656. (PMID: 28640584)
Annu Rev Phys Chem. 1998;49:337-69. (PMID: 9933908)
J Am Chem Soc. 2012 Oct 24;134(42):17661-70. (PMID: 23072506)
J Am Chem Soc. 2015 Nov 18;137(45):14387-95. (PMID: 26492582)
J Biol Chem. 2017 Jun 2;292(22):9229-9239. (PMID: 28377505)
J Biol Chem. 1987 Jul 15;262(20):9736-43. (PMID: 3298261)
Acc Chem Res. 2013 Nov 19;46(11):2524-35. (PMID: 23730940)
Biochemistry. 1991 May 28;30(21):5164-71. (PMID: 2036382)
J Am Chem Soc. 2011 Jun 22;133(24):9430-40. (PMID: 21612216)
J Am Chem Soc. 2007 Dec 26;129(51):15748-9. (PMID: 18047343)
Oncogene. 2015 Apr 16;34(16):2011-21. (PMID: 24909171)
J Am Chem Soc. 2017 Nov 22;139(46):16657-16665. (PMID: 29037038)
Biochemistry. 1992 May 26;31(20):4801-7. (PMID: 1591241)
J Am Chem Soc. 2012 Jan 18;134(2):1172-80. (PMID: 22121977)
معلومات مُعتمدة: R01 GM029595 United States GM NIGMS NIH HHS; R01 GM047274 United States GM NIGMS NIH HHS
المشرفين على المادة: 0 (Protons)
284SYP0193 (Fluorine)
42HK56048U (Tyrosine)
EC 1.17.4.- (Ribonucleotide Reductases)
تواريخ الأحداث: Date Created: 20220602 Date Completed: 20220630 Latest Revision: 20220801
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9248007
DOI: 10.1021/jacs.2c02906
PMID: 35652913
قاعدة البيانات: MEDLINE
الوصف
تدمد:1520-5126
DOI:10.1021/jacs.2c02906