دورية أكاديمية

Synchrony and idiosyncrasy in the gut microbiome of wild baboons.

التفاصيل البيبلوغرافية
العنوان: Synchrony and idiosyncrasy in the gut microbiome of wild baboons.
المؤلفون: Björk JR; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA. bjork.johannes@gmail.com., Dasari MR; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA., Roche K; Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA., Grieneisen L; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA., Gould TJ; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA., Grenier JC; Department of Genetics, CHU Sainte Justine Research Center, Montréal, Quebec, Canada.; Research Center, Montreal Heart Institute, Montréal, Quebec, Canada., Yotova V; Department of Genetics, CHU Sainte Justine Research Center, Montréal, Quebec, Canada., Gottel N; Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA., Jansen D; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA., Gesquiere LR; Department of Biology, Duke University, Durham, NC, USA., Gordon JB; Department of Biology, Duke University, Durham, NC, USA., Learn NH; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA., Wango TL; Amboseli Baboon Research Project, Amboseli National Park, Amboseli, Kenya.; The Department of Veterinary Anatomy and Animal Physiology, University of Nairobi, Nairobi, Kenya., Mututua RS; Amboseli Baboon Research Project, Amboseli National Park, Amboseli, Kenya., Kinyua Warutere J; Amboseli Baboon Research Project, Amboseli National Park, Amboseli, Kenya., Siodi L; Amboseli Baboon Research Project, Amboseli National Park, Amboseli, Kenya., Mukherjee S; Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA., Barreiro LB; Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA., Alberts SC; Department of Biology, Duke University, Durham, NC, USA.; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.; Duke University Population Research Institute, Duke University, Durham, NC, USA., Gilbert JA; Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA., Tung J; Department of Biology, Duke University, Durham, NC, USA.; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.; Duke University Population Research Institute, Duke University, Durham, NC, USA.; Canadian Institute for Advanced Research, Toronto, Ontario, Canada., Blekhman R; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.; Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA., Archie EA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA. earchie@nd.edu.
المصدر: Nature ecology & evolution [Nat Ecol Evol] 2022 Jul; Vol. 6 (7), pp. 955-964. Date of Electronic Publication: 2022 Jun 02.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: England NLM ID: 101698577 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2397-334X (Electronic) Linking ISSN: 2397334X NLM ISO Abbreviation: Nat Ecol Evol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Springer Nature
مواضيع طبية MeSH: Gastrointestinal Microbiome*/genetics , Microbiota*, Animals ; Bacteria/genetics ; Diet ; Humans ; Papio
مستخلص: Human gut microbial dynamics are highly individualized, making it challenging to link microbiota to health and to design universal microbiome therapies. This individuality is typically attributed to variation in host genetics, diets, environments and medications but it could also emerge from fundamental ecological forces that shape microbiota more generally. Here, we leverage extensive gut microbial time series from wild baboons-hosts who experience little interindividual dietary and environmental heterogeneity-to test whether gut microbial dynamics are synchronized across hosts or largely idiosyncratic. Despite their shared lifestyles, baboon microbiota were only weakly synchronized. The strongest synchrony occurred among baboons living in the same social group, probably because group members range over the same habitat and simultaneously encounter the same sources of food and water. However, this synchrony was modest compared to each host's personalized dynamics. In support, host-specific factors, especially host identity, explained, on average, more than three times the deviance in longitudinal dynamics compared to factors shared with social group members and ten times the deviance of factors shared across the host population. These results contribute to mounting evidence that highly idiosyncratic gut microbiomes are not an artefact of modern human environments and that synchronizing forces in the gut microbiome (for example, shared environments, diets and microbial dispersal) are not strong enough to overwhelm key drivers of microbiome personalization, such as host genetics, priority effects, horizontal gene transfer and functional redundancy.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Comment in: Nat Ecol Evol. 2022 Jul;6(7):849-850. doi: 10.1038/s41559-022-01769-0. (PMID: 35654894)
References: Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019). (PMID: 3053204310.1038/s41559-018-0731-z)
Schlomann, B. H. & Parthasarathy, R. Timescales of gut microbiome dynamics. Curr. Opin. Microbiol. 50, 56–63 (2019). (PMID: 31689582689916410.1016/j.mib.2019.09.011)
Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011). (PMID: 22084077322841910.1073/pnas.1110474108)
Finnicum, C. T. et al. Cohabitation is associated with a greater resemblance in gut microbiota which can impact cardiometabolic and inflammatory risk. BMC Microbiol. 19, 230 (2019). (PMID: 31640566680538810.1186/s12866-019-1602-8)
Bashan, A. et al. Universality of human microbial dynamics. Nature 534, 259–262 (2016). (PMID: 27279224490229010.1038/nature18301)
Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012). (PMID: 22674335420862610.1126/science.1224203)
Miller, E. T., Svanback, R. & Bohannan, B. J. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935 (2018). (PMID: 3026624410.1016/j.tree.2018.09.002)
Bjork, J., Díez-Vives, C., Astudillo-García, C., Archie, E. A. & Montoya, J. M. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat. Ecol. Evol. 3, 1172–1183 (2019). (PMID: 31285574691438010.1038/s41559-019-0935-x)
Sieber, M. et al. Neutrality in the metaorganism. PLoS Biol. 17, e3000298 (2019). (PMID: 31216282658394810.1371/journal.pbio.3000298)
Tredennick, A. T., de Mazancourt, C., Loreau, M. & Adler, P. B. Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands. Ecology 98, 971–981 (2017). (PMID: 2814493910.1002/ecy.1757)
Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008). (PMID: 1859818810.1086/589746)
Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009). (PMID: 1937913810.1111/j.1461-0248.2009.01299.x)
Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010). (PMID: 2083644210.1890/09-1162.1)
de Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013). (PMID: 2343818910.1111/ele.12088)
Gross, K. et al. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014). (PMID: 2433473110.1086/673915)
Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018). (PMID: 2966222210.1038/s41559-018-0519-1)
Rainey, P. B. & Quistad, S. D. Toward a dynamical understanding of microbial communities. Philos. Trans. R. Soc. B 375, 20190248 (2020). (PMID: 10.1098/rstb.2019.0248)
Martiny, J. B., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015). (PMID: 2654258110.1126/science.aac9323)
Debray, R. et al. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 20, 109–121 (2022). (PMID: 3445313710.1038/s41579-021-00604-w)
Risely, A., Wilhelm, K., Clutton-Brock, T., Manser, M. B. & Sommer, S. Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats. Nat. Commun. 12, 6017 (2021). (PMID: 34650048851691810.1038/s41467-021-26298-5)
Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Natl Acad. Sci. USA 112, E2930–E2938 (2015). (PMID: 25964341446050710.1073/pnas.1423854112)
Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013). (PMID: 23828941379158910.1126/science.1237439)
Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016). (PMID: 26839246474281010.1038/ncomms10516)
Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011). (PMID: 21624126327171110.1186/gb-2011-12-5-r50)
Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009). (PMID: 19892944360244410.1126/science.1177486)
Flores, G. E. et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 15, 531 (2014). (PMID: 25517225425299710.1186/s13059-014-0531-y)
Johnson, A. J. et al. Daily sampling reveals personalized diet–microbiome associations in humans. Cell Host Microbe 25, 789–802 (2019). (PMID: 3119493910.1016/j.chom.2019.05.005)
Smits, S. A., Marcobal, A., Higginbottom, S., Sonnenburg, J. L. & Kashyap, P. C. Individualized responses of gut microbiota to dietary intervention modeled in humanized mice. mSystems 1, e00098 (2016).
Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018). (PMID: 2948975310.1038/nature25973)
Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016). (PMID: 2712603910.1126/science.aad3503)
Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016). (PMID: 27126040524084410.1126/science.aad3369)
Grieneisen, L. et al. Gut microbiome heritability is nearly universal but environmentally contingent. Science 373, 181–186 (2021). (PMID: 34244407837776410.1126/science.aba5483)
Alberts S. C. & Altmann, J. in Long-Term Field Studies of Primates (eds Kappeler, P. & Watts, D. P.) 261–287 (Springer, 2012).
Ren, T., Grieneisen, L., Alberts, S. C., Archie, E. A. & Wu, M. Development, diet, and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ. Microbiol. 18, 1312–1325 (2016). (PMID: 2581806610.1111/1462-2920.12852)
Grieneisen, L. et al. Genes, geology, and germs: gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proc. R. Soc. B 286, 20190431 (2019). (PMID: 31014219650192710.1098/rspb.2019.0431)
Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1786 (2018). (PMID: 29725011593436910.1038/s41467-018-04204-w)
Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019). (PMID: 3013546810.1038/s41396-018-0256-0)
Baniel, A. et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome 9, 26 (2021). (PMID: 33485388782801410.1186/s40168-020-00977-9)
Mellard, J. P., Audoye, P. & Loreau, M. Seasonal patterns in species diversity across biomes. Ecology 100, e02627 (2019). (PMID: 3069884210.1002/ecy.2627)
Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006). (PMID: 1658448410.1111/j.1462-2920.2005.00956.x)
Sloan, W. T., Woodcock, S., Lunn, M., Head, I. M. & Curtis, T. P. Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb. Ecol. 53, 443–455 (2007). (PMID: 1716512110.1007/s00248-006-9141-x)
Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. eLife 4, e05224 (2015). (PMID: 437949510.7554/eLife.05224)
Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016). (PMID: 26824072473085410.1126/sciadv.1500997)
Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014). (PMID: 25170151433799610.1126/science.1254529)
Amato, K. R. et al. Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a neotropical primate. Microb. Ecol. 74, 250–258 (2017). (PMID: 2812472710.1007/s00248-017-0938-6)
Amato, K. R. et al. The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (Alouatta pigra). Am. J. Phys. Anthropol. 155, 652–664 (2014). (PMID: 2525207310.1002/ajpa.22621)
Perofsky, A. C., Leriw, R. J., Abondano, L. A., Di Fiore, A. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc. R. Soc. B 284, 20172274 (2017). (PMID: 29212730574028810.1098/rspb.2017.2274)
Silk, J. B. Activities and feeding behavior of free-ranging pregnant baboons. Int. J. Primatol. 8, 593–613 (1987). (PMID: 10.1007/BF02735779)
Altmann, S. A. Foraging for Survival: Yearling Baboons in Africa (Univ. Chicago Press, 1998).
Bronikowski, A. M. & Altmann, J. Foraging in a variable environment: weather patterns and the behavioral ecology of baboons. Behav. Ecol. Sociobiol. 39, 11–25 (1996). (PMID: 10.1007/s002650050262)
Muruthi, P., Altmann, J. & Altmann, S. Resource base, parity and reproductive condition affect females’ feeding time and nutrient intake within and between groups of a baboon population. Oecologia 87, 467–472 (1991). (PMID: 2831368710.1007/BF00320408)
Shopland, J. M. Food quality, spatial deployment, and the intensity of feeding interference in yellow baboons (Papio cynocephalus). Behav. Ecol. Sociobiol. 21, 149–156 (1987). (PMID: 10.1007/BF00303204)
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). (PMID: 27214047492737710.1038/nmeth.3869)
Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019). (PMID: 31222023658690310.1038/s41467-019-10656-5)
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017). (PMID: 29187837569513410.3389/fmicb.2017.02224)
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016). (PMID: 2629606610.1038/ismej.2015.142)
Sprockett D. tyRa: Build Models for Microbiome Data. R package version 0.1.0 https://danielsprockett.github.io/tyRa/articles/tyRa.html (2020).
Oksanen J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020).
Vieira-Silva, S. et al. Species–function relationships shape ecological properties of the human gut microbiome. Nat. Microbiol. 1, 16088 (2016). (PMID: 2757311010.1038/nmicrobiol.2016.88)
Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004). (PMID: 10.1198/016214504000000980)
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011). (PMID: 10.1111/j.1467-9868.2010.00749.x)
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).
Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018). (PMID: 30275573623562210.1038/s41592-018-0141-9)
معلومات مُعتمدة: P2C HD065563 United States HD NICHD NIH HHS; R01 HD088558 United States HD NICHD NIH HHS; R35 GM128716 United States GM NIGMS NIH HHS; P01 AG031719 United States AG NIA NIH HHS; R01 AG053330 United States AG NIA NIH HHS; R21 AG049936 United States AG NIA NIH HHS; R01 AG034513 United States AG NIA NIH HHS; P30 AG024361 United States AG NIA NIH HHS; R01 AG071684 United States AG NIA NIH HHS; R03 AG045459 United States AG NIA NIH HHS; R21 AG055777 United States AG NIA NIH HHS
تواريخ الأحداث: Date Created: 20220602 Date Completed: 20220711 Latest Revision: 20240615
رمز التحديث: 20240615
مُعرف محوري في PubMed: PMC9271586
DOI: 10.1038/s41559-022-01773-4
PMID: 35654895
قاعدة البيانات: MEDLINE
الوصف
تدمد:2397-334X
DOI:10.1038/s41559-022-01773-4