دورية أكاديمية

RBP-J deficiency promoted the proliferation and differentiation of CD133-positive cells in both in vitro and in vivo studies.

التفاصيل البيبلوغرافية
العنوان: RBP-J deficiency promoted the proliferation and differentiation of CD133-positive cells in both in vitro and in vivo studies.
المؤلفون: Ye X; Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China., Li M; Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China., Bian W; Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China., Wu A; Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China., Zhang T; Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China., Li J; Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China., Zhou P; Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China., Cui H; Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China., Ding YQ; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China., Liao M; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.; Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China., Sun C; Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
المصدر: The European journal of neuroscience [Eur J Neurosci] 2022 Jul; Vol. 56 (2), pp. 3839-3860. Date of Electronic Publication: 2022 Jun 14.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: France NLM ID: 8918110 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-9568 (Electronic) Linking ISSN: 0953816X NLM ISO Abbreviation: Eur J Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Wiley-Blackwell
Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
مواضيع طبية MeSH: Immunoglobulin J Recombination Signal Sequence-Binding Protein*/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein*/metabolism , Neural Stem Cells*/metabolism, Animals ; Cell Differentiation/physiology ; Cell Proliferation ; Mice ; Neurogenesis/physiology
مستخلص: Although Notch signalling pathway could control the proliferation and differentiation of neural stem cells (NSCs), it is largely unknown about the effect of Notch signalling pathway on the neurogenesis of CD133-positive cells. By using the primary cultured ependymal cells and the transgenic mouse, we found that CD133 immunoreactivity was exclusively localized in the ependymal layer of ventricles; moreover, most CD133-positive cells were co-labelled with Nestin. In addition, recombination signal binding protein J (RBP-J), a key nuclear effector of Notch signalling pathway, was highly active in CD133-positive cells. CD133-positive cells can differentiate into the immature and mature neurons; in particular, the number of CD133-positive cells differentiating into the immature and mature neurons was significantly increased following the deficiency or interference of RBP-J in vivo or in vitro. By using real-time qPCR and Western blot, we found that RBP-J and Hes1 were downregulated, whereas Notch1 was upregulated in the expression levels of mRNAs and proteins following the deficiency or interference of RBP-J. These results demonstrated RBP-J deficiency promoted the proliferation and differentiation of CD133-positive cells. Therefore, we speculated that RBP-J could maintain CD133-positive cells in the characteristics of NSCs possibly by regulating Notch1/RBP-J/Hes1 pathway. It will provide a novel molecular insight into the function of RBP-J as well as facilitate a future investigation of CD133-positive cells with respect to their potential application in neurodegenerative disorder.
(© 2022 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
References: Ables, J. L., Decarolis, N. A., Johnson, M. A., Rivera, P. D., Gao, Z., Cooper, D. C., Radtke, F., Hsieh, J., & Eisch, A. J. (2010). Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. The Journal of Neuroscience, 30(31), 10484-10492. https://doi.org/10.1523/JNEUROSCI.4721-09.2010.
Alfaro-Cervello, C., Soriano-Navarro, M., Mirzadeh, Z., Alvarez-Buylla, A., & Garcia-Verdugo, J. M. (2012). Biciliated ependymal cell proliferation contributes to spinal cord growth. The Journal of Comparative Neurology, 520(15), 3528-3552. https://doi.org/10.1002/cne.23104.
Andreu-Agullo, C., Morante-Redolat, J. M., Delgado, A. C., & Farinas, I. (2009). Vascular niche factor PEDF modulates notch-dependent stemness in the adult subependymal zone. Nature Neuroscience, 12, 1514-1523. https://doi.org/10.1038/nn.2437.
Androutsellis-Theotokis, A., Leker, R. R., Soldner, F., Hoeppner, D. J., Ravin, R., Poser, S. W., Rueger, M. A., Bae, S. K., Kittappa, R., & McKay, R. D. (2006). Notch signalling regulates stem cell numbers in vitro and in vivo. Nature, 442(7104), 823-826. https://doi.org/10.1038/nature04940.
Arias-Carrión, O., & Yuan, T. (2009). Autologous neural stem cell transplantation: A new treatment option for Parkinson's disease? Medical Hypotheses, 73(5), 757-759. https://doi.org/10.1016/j.mehy.2009.04.029.
Barnabé-Heider, F., Göritz, C., Sabelström, H., Takebayashi, H., Pfrieger, F. W., Meletis, K., & Frisén, J. (2010). Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell, 7, 470-482. https://doi.org/10.1016/j.stem.2010.07.014.
Baron, M. (2003). An overview of the notch signalling pathway. Seminars in Cell & Developmental Biology, 14, 113-119. https://doi.org/10.1016/s1084-9521(02)00179-9.
Basak, O., & Taylor, V. (2007). Identification of self-replicating multipotent progenitors in the embryonic nervous system by high notch activity and Hes5 expression. The European Journal of Neuroscience, 25(4), 1006-1022. https://doi.org/10.1111/j.1460-9568.2007.05370.x.
Beckervordersandforth, R., Tripathi, P., Ninkovic, J., Bayam, E., Lepier, A., Stempfhuber, B., Kirchhoff, F., Hirrlinger, J., Haslinger, A., Lie, D. C., Beckers, J., Yoder, B., Irmler, M., & Gotz, M. (2010). In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell, 7(6), 744-758. https://doi.org/10.1016/j.stem.2010.11.017.
Berg, D. A., Kirkham, M., Wang, H., Frisen, J., & Simon, A. (2011). Dopamine controls neurogenesis in the adult salamander midbrain in homeostasis and during regeneration of dopamine neurons. Cell Stem Cell, 8, 426-433. https://doi.org/10.1016/j.stem.2011.02.001.
Bertrand, N., Castro, D. S., & Guillemot, F. (2002). Proneural genes and the specification of neural cell types. Nature Reviews. Neuroscience, 3(7), 517-530. https://doi.org/10.1038/nrn874.
Blanpain, C., Lowry, W. E., Pasolli, H. A., & Fuchs, E. (2006). Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes & Development, 20(21), 3022-3035. https://doi.org/10.1101/gad.1477606.
Bologna-Molina, R., Mosqueda-Taylor, A., Molina-Frechero, N., Mori-Estevez, A., & Sánchez-Acuña, G. (2013). Comparison of the value of PCNA and Ki-67 as markers of cell proliferation in ameloblastic tumors. Medicina Oral, Patología Oral y Cirugía Bucal, 18, e174-e179. https://doi.org/10.4317/medoral.18573.
Bray, S. J. (2006). Notch signalling: A simple pathway becomes complex. Nature Reviews. Molecular Cell Biology, 7(9), 678-689. https://doi.org/10.1038/nrm2009.
Breunig, J. J., Silbereis, J., Vaccarino, F. M., Sestan, N., & Rakic, P. (2007). Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20558-20563. https://doi.org/10.1073/pnas.0710156104.
Capela, A., & Temple, S. (2002). LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron, 35(5), 865-875. https://doi.org/10.1016/s0896-6273(02)00835-8.
Carlen, M., Meletis, K., Goritz, C., Darsalia, V., Evergren, E., Tanigaki, K., Amendola, M., Barnabe-Heider, F., Yeung, M. S., Naldini, L., Honjo, T., Kokaia, Z., Shupliakov, O., Cassidy, R. M., Lindvall, O., & Frisen, J. (2009). Forebrain ependymal cells are notch-dependent and generate neuroblasts and astrocytes after stroke. Nature Neuroscience, 12(3), 259-267. https://doi.org/10.1038/nn.2268.
Cave, J. W., Wang, M., & Baker, H. (2014). Adult subventricular zone neural stem cells as a potential source of dopaminergic replacement neurons. Frontiers in Neuroscience, 8, 16. https://doi.org/10.3389/fnins.2014.00016.
Chen, D., Wu, C. F., Shi, B., & Xu, Y. M. (2002). Tamoxifen and toremifene cause impairment of learning and memory function in mice. Pharmacology, Biochemistry, and Behavior, 71(1-2), 269-276. https://doi.org/10.1016/s0091-3057(01)00656-6.
Chiasson, B. J., Tropepe, V., Morshead, C. M., & van der Kooy, D. (1999). Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. The Journal of Neuroscience, 19, 4462-4471. https://doi.org/10.1523/JNEUROSCI.19-11-04462.1999.
Chojnacki, A., Shimazaki, T., Gregg, C., Weinmaster, G., & Weiss, S. (2003). Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. The Journal of Neuroscience, 23(5), 1730-1741. https://doi.org/10.1523/JNEUROSCI.23-05-01730.2003.
Chojnacki, A. K., Mak, G. K., & Weiss, S. (2009). Identity crisis for adult periventricular neural stem cells: Subventricular zone astrocytes, ependymal cells or both? Nature Reviews. Neuroscience, 10, 153-163. https://doi.org/10.1038/nrn2571.
Codega, P., Silva-Vargas, V., Paul, A., Maldonado-Soto, A. R., Deleo, A. M., Pastrana, E., & Doetsch, F. (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron, 82(3), 545-559. https://doi.org/10.1016/j.neuron.2014.02.039.
Coskun, V., Wu, H., Blanchi, B., Tsao, S., Kim, K., Zhao, J., Biancotti, J. C., Hutnick, L., Krueger, R. J., Fan, G., de Vellis, J., & Sun, Y. E. (2008). CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proceedings of the National Academy of Sciences of the United States of America, 105(3), 1026-1031. https://doi.org/10.1073/pnas.0710000105.
Cruz Gaitán, A. M., Torres-Ruíz, N. M., & Carri, N. G. (2015). Embryonic neural stem cells in a 3D bioassay for trophic stimulation studies. Brain Research Bulletin, 115, 37-44. https://doi.org/10.1016/j.brainresbull.2015.04.006.
Danilov, A. I., Kokaia, Z., & Lindvall, O. (2012). Ectopic ependymal cells in striatum accompany neurogenesis in a rat model of stroke. Neuroscience, 214, 159-170. https://doi.org/10.1016/j.neuroscience.2012.03.062.
Di Giovanni, G., Di Matteo, V., & Esposito, E. (2009). Birth, life and death of dopaminergic neurons in the substantia nigra. Journal of Neural Transmission. Supplementum, 73:1 p preceeding table of contents. https://doi.org/10.1007/978-3-211-92660-4.
Doetsch, F. (2003). The glial identity of neural stem cells. Nature Neuroscience, 6, 1127-1134. https://doi.org/10.1038/nn1144.
Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97(6), 703-716. https://doi.org/10.1016/s0092-8674(00)80783-7.
Doetsch, F., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. The Journal of Neuroscience, 17, 5046-5061. https://doi.org/10.1523/JNEUROSCI.17-13-05046.1997.
Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (2002). EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron, 36, 1021-1034. https://doi.org/10.1016/s0896-6273(02)01133-9.
Duncan, A. W., Rattis, F. M., DiMascio, L. N., Congdon, K. L., Pazianos, G., Zhao, C., Yoon, K., Cook, J. M., Willert, K., Gaiano, N., & Reya, T. (2005). Integration of notch and Wnt signaling in hematopoietic stem cell maintenance. Nature Immunology, 6, 314-322. https://doi.org/10.1038/ni1164.
Ehm, O., Goritz, C., Covic, M., Schaffner, I., Schwarz, T. J., Karaca, E., Kempkes, B., Kremmer, E., Pfrieger, F. W., Espinosa, L., Bigas, A., Giachino, C., Taylor, V., Frisen, J., & Lie, D. C. (2010). RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. The Journal of Neuroscience, 30(41), 13794-13807. https://doi.org/10.1523/JNEUROSCI.1567-10.2010.
Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., Possnert, G., Druid, H., & Frisén, J. (2014). Neurogenesis in the striatum of the adult human brain. Cell, 156(5), 1072-1083. https://doi.org/10.1016/j.cell.2014.01.044.
Fargeas, C. A., Corbeil, D., & Huttner, W. B. (2003). AC133 antigen, CD133, prominin-1, prominin-2, etc.: Prominin family gene products in need of a rational nomenclature. Stem Cells, 21, 506-508. https://doi.org/10.1634/stemcells.21-4-506.
Furukawa, T., Mukherjee, S., Bao, Z. Z., Morrow, E. M., & Cepko, C. L. (2000). Rax, Hes1, and notch1 promote the formation of Muller glia by postnatal retinal progenitor cells. Neuron, 26, 383-394. https://doi.org/10.1016/s0896-6273(00)81171-x.
Golmohammadi, M. G., Blackmore, D. G., Large, B., Azari, H., Esfandiary, E., Paxinos, G., Franklin, K. B., Reynolds, B. A., & Rietze, R. L. (2008). Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain. Stem Cells, 26(4), 979-987. https://doi.org/10.1634/stemcells.2007-0919.
Han, H., Tanigaki, K., Yamamoto, N., Kuroda, K., Yoshimoto, M., Nakahata, T., Ikuta, K., & Honjo, T. (2002). Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. International Immunology, 14, 637-645. https://doi.org/10.1093/intimm/dxf030.
Hattiangady, B., & Shetty, A. K. (2008). Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiology of Aging, 29, 129-147. https://doi.org/10.1016/j.neurobiolaging.2006.09.015.
Hayashi, S., & McMahon, A. P. (2002). Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: A tool for temporally regulated gene activation/inactivation in the mouse. Developmental Biology, 244, 305-318. https://doi.org/10.1006/dbio.2002.0597.
Henry, S. P., Jang, C., Deng, J. M., Zhang, Z., Behringer, R. R., & de Crombrugghe, B. (2009). Generation of aggrecan-CreERT2 knockin mice for inducible Cre activity in adult cartilage. Genesis, 47, 805-814. https://doi.org/10.1002/dvg.20564.
Hitoshi, S., Alexson, T., Tropepe, V., Donoviel, D., Elia, A. J., Nye, J. S., Conlon, R. A., Mak, T. W., Bernstein, A., & van der Kooy, D. (2002). Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes & Development, 16(7), 846-858. https://doi.org/10.1101/gad.975202.
Höglinger, G. U., Rizk, P., Muriel, M. P., Duyckaerts, C., Oertel, W. H., Caille, I., & Hirsch, E. C. (2004). Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature Neuroscience, 7, 726-735. https://doi.org/10.1038/nn1265.
Horner, P. J., Power, A. E., Kempermann, G., Kuhn, H. G., Palmer, T. D., Winkler, J., Thal, L. J., & Gage, F. H. (2000). Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. The Journal of Neuroscience, 20(6), 2218-2228. https://doi.org/10.1523/JNEUROSCI.20-06-02218.2000.
Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K., & Kageyama, R. (2010). Essential roles of notch signaling in maintenance of neural stem cells in developing and adult brains. The Journal of Neuroscience, 30(9), 3489-3498. https://doi.org/10.1523/JNEUROSCI.4987-09.2010.
Imayoshi, I., Shimogori, T., Ohtsuka, T., & Kageyama, R. (2008). Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline. Development, 135(15), 2531-2541. https://doi.org/10.1242/dev.021535.
Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U., & Frisen, J. (1999). Identification of a neural stem cell in the adult mammalian central nervous system. Cell, 96, 25-34. https://doi.org/10.1016/s0092-8674(00)80956-3.
Juríková, M., Danihel, Ľ., Polák, Š., & Varga, I. (2016). Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochemica, 118, 544-552. https://doi.org/10.1016/j.acthis.2016.05.002.
Kageyama, R., & Ohtsuka, T. (1999). The notch-Hes pathway in mammalian neural development. Cell Research, 9(3), 179-188. https://doi.org/10.1038/sj.cr.7290016.
Kempermann, G. (2014). Off the beaten track: New neurons in the adult human striatum. Cell, 156(5), 870-871. https://doi.org/10.1016/j.cell.2014.02.027.
Kitada, M., Wakao, S., & Dezawa, M. (2018). Intracellular signaling similarity reveals neural stem cell-like properties of ependymal cells in the adult rat spinal cord. Development, Growth & Differentiation, 60, 326-340. https://doi.org/10.1111/dgd.12546.
Lee, A., Kessler, J. D., Read, T. A., Kaiser, C., Corbeil, D., Huttner, W. B., Johnson, J. E., & Wechsler-Reya, R. J. (2005). Isolation of neural stem cells from the postnatal cerebellum. Nature Neuroscience, 8(6), 723-729. https://doi.org/10.1038/nn1473.
Lee, C., Zhou, L., Liu, J., Shi, J., Geng, Y., Liu, M., Wang, J., Su, X., Barad, N., Wang, J., Sun, Y. E., & Lin, Q. (2020). Single-cell RNA-seq analysis revealed long-lasting adverse effects of tamoxifen on neurogenesis in prenatal and adult brains. Proceedings of the National Academy of Sciences of the United States of America, 117(32), 19578-19589. https://doi.org/10.1073/pnas.1918883117.
Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965), 542-545. https://doi.org/10.1126/science.1180794.
Lie, D. C., Song, H., Colamarino, S. A., Ming, G. L., & Gage, F. H. (2004). Neurogenesis in the adult brain: New strategies for central nervous system diseases. Annual Review of Pharmacology and Toxicology, 44, 399-421. https://doi.org/10.1146/annurev.pharmtox.44.101802.121631.
Louvi, A., & Artavanis-Tsakonas, S. (2006). Notch signalling in vertebrate neural development. Nature Reviews. Neuroscience, 7, 93-102. https://doi.org/10.1038/nrn1847.
Lugert, S., Basak, O., Knuckles, P., Haussler, U., Fabel, K., Gotz, M., Haas, C. A., Kempermann, G., Taylor, V., & Giachino, C. (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5), 445-456. https://doi.org/10.1016/j.stem.2010.03.017.
Luo, Y., Coskun, V., Liang, A., Yu, J., Cheng, L., Ge, W., Shi, Z., Zhang, K., Li, C., Cui, Y., Lin, H., Luo, D., Wang, J., Lin, C., Dai, Z., Zhu, H., Zhang, J., Liu, J., Liu, H., … Li, S. (2015). Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell, 161(5), 1175-1186. https://doi.org/10.1016/j.cell.2015.04.001.
Machold, R., & Fishell, G. (2005). Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron, 48, 17-24. https://doi.org/10.1016/j.neuron.2005.08.028.
Magnusson, J. P., Goritz, C., Tatarishvili, J., Dias, D. O., Smith, E. M., Lindvall, O., Kokaia, Z., & Frisen, J. (2014). A latent neurogenic program in astrocytes regulated by notch signaling in the mouse. Science, 346, 237-241. https://doi.org/10.1126/science.346.6206.237.
Marzesco, A. M., Janich, P., Wilsch-Brauninger, M., Dubreuil, V., Langenfeld, K., Corbeil, D., & Huttner, W. B. (2005). Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. Journal of Cell Science, 118(13), 2849-2858. https://doi.org/10.1242/jcs.02439.
Meletis, K., Barnabe-Heider, F., Carlen, M., Evergren, E., Tomilin, N., Shupliakov, O., & Frisen, J. (2008). Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biology, 6(7), e182. https://doi.org/10.1371/journal.pbio.0060182.
Merkle, F. T., Mirzadeh, Z., & Alvarez-Buylla, A. (2007). Mosaic organization of neural stem cells in the adult brain. Science, 317(5836), 381-384. https://doi.org/10.1126/science.1144914.
Ming, G. L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70(4), 687-702. https://doi.org/10.1016/j.neuron.2011.05.001.
Miraglia, S., Godfrey, W., Yin, A. H., Atkins, K., Warnke, R., Holden, J. T., Bray, R. A., Waller, E. K., & Buck, D. W. (1997). A novel five-transmembrane hematopoietic stem cell antigen: Isolation, characterization, and molecular cloning. Blood, 90, 5013-5021. https://doi.org/10.1182/blood.V90.12.5013.
Mizutani, K., Yoon, K., Dang, L., Tokunaga, A., & Gaiano, N. (2007). Differential notch signaling distinguishes neural stem cells from intermediate progenitors. Nature, 449(7160), 351-355. https://doi.org/10.1038/nature06090.
Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598-611. https://doi.org/10.1016/j.cell.2008.01.038.
Mothe, A. J., & Tator, C. H. (2005). Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience, 131, 177-187. https://doi.org/10.1016/j.neuroscience.2004.10.011.
Nagao, M., Sugimori, M., & Nakafuku, M. (2007). Cross talk between notch and growth factor/cytokine signaling pathways in neural stem cells. Molecular and Cellular Biology, 27, 3982-3994. https://doi.org/10.1128/MCB.00170-07.
Nakafuku, M., Nagao, M., Grande, A., & Cancelliere, A. (2008). Revisiting neural stem cell identity. Proceedings of the National Academy of Sciences of the United States of America, 105(3), 829-830. https://doi.org/10.1073/pnas.0711637105.
Ohsawa, R., Ohtsuka, T., & Kageyama, R. (2005). Mash1 and Math3 are required for development of branchiomotor neurons and maintenance of neural progenitors. The Journal of Neuroscience, 25, 5857-5865. https://doi.org/10.1523/JNEUROSCI.4621-04.2005.
Park, S., Kim, E., Koh, S., Maeng, S., Lee, W., Lim, J., Shim, I., & Lee, Y. (2012). Dopaminergic differentiation of neural progenitors derived from placental mesenchymal stem cells in the brains of Parkinson's disease model rats and alleviation of asymmetric rotational behavior. Brain Research, 1466, 158-166. https://doi.org/10.1016/j.brainres.2012.05.032.
Peng, J., & Andersen, J. K. (2011). Mutant alpha-synuclein and aging reduce neurogenesis in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Aging Cell, 10, 255-262. https://doi.org/10.1111/j.1474-9726.2010.00656.x.
Pfenninger, C. V., Roschupkina, T., Hertwig, F., Kottwitz, D., Englund, E., Bengzon, J., Jacobsen, S. E., & Nuber, U. A. (2007). CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Research, 67(12), 5727-5736. https://doi.org/10.1080/1061186X.2018.1479756.
Pfenninger, C. V., Steinhoff, C., Hertwig, F., & Nuber, U. A. (2011). Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression. Glia, 59, 68-81. https://doi.org/10.1002/glia.21077.
Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105-111. https://doi.org/10.1038/35102167.
Rotheneichner, P., Romanelli, P., Bieler, L., Pagitsch, S., Zaunmair, P., Kreutzer, C., König, R., Marschallinger, J., Aigner, L., & Couillard-Després, S. (2017). Tamoxifen activation of Cre-recombinase has no persisting effects on adult neurogenesis or learning and anxiety. Frontiers in Neuroscience, 11, 27. https://doi.org/10.3389/fnins.2017.00027.
Scheer, N., Groth, A., Hans, S., & Campos-Ortega, J. A. (2001). An instructive function for notch in promoting gliogenesis in the zebrafish retina. Development, 128, 1099-1107. https://doi.org/10.1242/dev.128.7.1099.
Shan, X., Chi, L., Bishop, M., Luo, C., Lien, L., Zhang, Z., & Liu, R. (2006). Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease-like mice. Stem Cells, 24(5), 1280-1287. https://doi.org/10.1634/stemcells.2005-0487.
Shi, M., Hu, Z. L., Zheng, M. H., Song, N. N., Huang, Y., Zhao, G., Han, H., & Ding, Y. Q. (2012). Notch-Rbpj signaling is required for the development of noradrenergic neurons in the mouse locus coeruleus. Journal of Cell Science, 125, 4320-4332. https://doi.org/10.1242/jcs.102152.
Shimizu, T., Kagawa, T., Inoue, T., Nonaka, A., Takada, S., Aburatani, H., & Taga, T. (2008). Stabilized beta-catenin functions through TCF/LEF proteins and the notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells. Molecular and Cellular Biology, 28(24), 7427-7441. https://doi.org/10.1128/MCB.01962-07.
Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D., & Dirks, P. B. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396-401. https://doi.org/10.1038/nature03128.
Song, X., Call, G. B., Kirilly, D., & Xie, T. (2007). Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development, 134(6), 1071-1080. https://doi.org/10.1242/dev.003392.
Spassky, N., Merkle, F. T., Flames, N., Tramontin, A. D., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (2005). Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. The Journal of Neuroscience, 25, 10-18. https://doi.org/10.1523/JNEUROSCI.1108-04.2005.
Sun, C., Ou, X., Farley, J. M., Stockmeier, C., Bigler, S., Brinton, R. D., & Wang, J. M. (2012). Allopregnanolone increases the number of dopaminergic neurons in substantia nigra of a triple transgenic mouse model of Alzheimer's disease. Current Alzheimer Research, 9, 473-480. https://doi.org/10.2174/156720512800492567.
Takizawa, T., Ochiai, W., Nakashima, K., & Taga, T. (2003). Enhanced gene activation by notch and BMP signaling cross-talk. Nucleic Acids Research, 31(19), 5723-5731. https://doi.org/10.1093/nar/gkg778.
Tanigaki, K., Nogaki, F., Takahashi, J., Tashiro, K., Kurooka, H., & Honjo, T. (2001). Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron, 29, 45-55. https://doi.org/10.1016/S0896-6273(01)00179-9.
Uchida, N., Buck, D. W., He, D., Reitsma, M. J., Masek, M., Phan, T. V., Tsukamoto, A. S., Gage, F. H., & Weissman, I. L. (2000). Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 14720-14725. https://doi.org/10.1073/pnas.97.26.14720.
Weigmann, A., Corbeil, D., Hellwig, A., & Huttner, W. B. (1997). Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 94, 12425-12430. https://doi.org/10.1073/pnas.94.23.12425.
Weill-Engerer, S., David, J. P., Sazdovitch, V., Liere, P., Eychenne, B., Pianos, A., Schumacher, M., Delacourte, A., Baulieu, E. E., & Akwa, Y. (2002). Neurosteroid quantification in human brain regions: Comparison between Alzheimer's and nondemented patients. The Journal of Clinical Endocrinology and Metabolism, 87(11), 5138-5143. https://doi.org/10.1210/jc.2002-020878.
Worlitzer, M. M. A., Viel, T., Jacobs, A. H., & Schwamborn, J. C. (2013). The majority of newly generated cells in the adult mouse substantia nigra express low levels of Doublecortin, but their proliferation is unaffected by 6-OHDA-induced nigral lesion or minocycline-mediated inhibition of neuroinflammation. The European Journal of Neuroscience, 38(5), 2684-2692. https://doi.org/10.1111/ejn.12269.
Xie, M. Q., Chen, Z. C., Zhang, P., Huang, H. J., Wang, T. T., Ding, Y. Q., Qi, S. S., Zhang, C., Chen, S. X., Zhou, P., Shao, C. C., Liao, M., & Sun, C. Y. (2017). Newborn dopaminergic neurons are associated with the migration and differentiation of SVZ-derived neural progenitors in a 6-hydroxydopamin-injected mouse model. Neuroscience, 352, 64-78. https://doi.org/10.1016/j.neuroscience.2017.03.045.
Yamamoto, N., Tanigaki, K., Han, H., Hiai, H., & Honjo, T. (2003). Notch/RBP-J signaling regulates epidermis/hair fate determination of hair follicular stem cells. Current Biology, 13(4), 333-338. https://doi.org/10.1016/S0960-9822(03)00081-2.
Yoon, K., & Gaiano, N. (2005). Notch signaling in the mammalian central nervous system: Insights from mouse mutants. Nature Neuroscience, 8(6), 709-715. https://doi.org/10.1038/nn1475.
Zhang, P., Xie, M. Q., Ding, Y. Q., Liao, M., Qi, S. S., Chen, S. X., Gu, Q. Q., Zhou, P., & Sun, C. Y. (2015). Allopregnanolone enhances the neurogenesis of midbrain dopaminergic neurons in APPswe/PSEN1 mice. Neuroscience, 290, 214-226. https://doi.org/10.1016/j.neuroscience.2015.01.019.
Zhao, M., & Janson, L. A. (2009). Bromodeoxyuridine infused into the cerebral ventricle of adult mice labels nigral neurons under physiological conditions--a method to detect newborn nerve cells in regions with a low rate of neurogenesis. Journal of Neuroscience Methods, 184, 327-331. https://doi.org/10.1016/j.jneumeth.2009.08.007.
Zhao, M., Momma, S., Delfani, K., Carlen, M., Cassidy, R. M., Johansson, C. B., Brismar, H., Shupliakov, O., Frisen, J., & Janson, A. M. (2003). Evidence for neurogenesis in the adult mammalian substantia nigra. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7925-7930. https://doi.org/10.1073/pnas.1131955100.
فهرسة مساهمة: Keywords: CD133-positive cell; RBP-J; cell proliferation and differentiation; neural stem cell; notch signalling pathway
المشرفين على المادة: 0 (Immunoglobulin J Recombination Signal Sequence-Binding Protein)
0 (Rbpj protein, mouse)
تواريخ الأحداث: Date Created: 20220606 Date Completed: 20220715 Latest Revision: 20221004
رمز التحديث: 20221213
DOI: 10.1111/ejn.15727
PMID: 35661443
قاعدة البيانات: MEDLINE
الوصف
تدمد:1460-9568
DOI:10.1111/ejn.15727