دورية أكاديمية

Differences in gene expression despite identical histomorphology in sinonasal intestinal-type adenocarcinoma and metastases from colorectal adenocarcinoma.

التفاصيل البيبلوغرافية
العنوان: Differences in gene expression despite identical histomorphology in sinonasal intestinal-type adenocarcinoma and metastases from colorectal adenocarcinoma.
المؤلفون: Sjöstedt S; Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital, Copenhagen, Denmark., Vieira FG; Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark., Karnov K; Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital, Copenhagen, Denmark., Agander TK; Department of Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark., Willemoe GL; Department of Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark., Rohrberg KS; Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark., Nielsen FC; Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark., von Buchwald C; Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital, Copenhagen, Denmark.
المصدر: APMIS : acta pathologica, microbiologica, et immunologica Scandinavica [APMIS] 2022 Sep; Vol. 130 (9), pp. 551-559. Date of Electronic Publication: 2022 Jun 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Munksgaard Country of Publication: Denmark NLM ID: 8803400 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1600-0463 (Electronic) Linking ISSN: 09034641 NLM ISO Abbreviation: APMIS Subsets: MEDLINE
أسماء مطبوعة: Publication: Copenhagen : Munksgaard
Original Publication: Copenhagen : Munksgaard, c1988-
مواضيع طبية MeSH: Adenocarcinoma*/pathology , Colorectal Neoplasms*/pathology, Biomarkers, Tumor/genetics ; Biomarkers, Tumor/metabolism ; Gene Expression ; Humans
مستخلص: Sinonasal intestinal-type adenocarcinoma (sITAC) is histomorphologically indistinguishable from colorectal adenocarcinoma (CRC) leading to diagnostic challenges. Metastases from CRCs to the sinonasal tract have been reported. The aim of the study was to identify a biomarker making it possible to distinguish between sITAC and metastases of colorectal origin. Formalin-fixated paraffin-embedded (FFPE) tissue from 20 consecutive patients with sITAC treated at Rigshospitalet, Denmark from 2005 to 2017, 20 patients with CRC, and second patients with both sinonasal and colorectal carcinomas were included, and RNA-sequencing was performed on all samples. Moreover, a series of 26 samples from metastasizing CRC were included (in-house data). 3139 differentially expressed genes were identified, of these several were deemed as possible biomarkers, including CSDE1, for which immunohistochemical staining was performed. sITAC and CRC differ in genomic expression. CSDE1, previously found upregulated in CRC, was significantly differentially expressed. Using immunohistochemical staining, no sITACs displayed strong and diffuse staining for CSDE1, which represents a potential marker to use in distinguishing sITAC from a metastasis of colorectal origin. This knowledge could improve the diagnostic process and hopefully the outcome in patients with this rare tumor.
(© 2022 APMIS. Published by John Wiley & Sons Ltd.)
References: Abecasis J, Viana G, Pissarra C, Pereira T, Fonseca I, Soares J. Adenocarcinomas of the nasal cavity and paranasal sinuses: a clinicopathological and immunohistochemical study of 14 cases. Histopathology. 2004;45(3):254-9.
Leivo I. Intestinal-type adenocarcinoma: classification, immunophenotype, molecular features and differential diagnosis. Head Neck Pathol. 2017;11(3):295-300.
Skalova A, Sar A, Laco J, Miesbauerova M, Steiner P, Švajdler M et al. The role of SATB2 as a diagnostic marker of Sinonasal intestinal-type adenocarcinoma. Appl Immunohistochem Mol Morphol 2016;26:1-7.
Fleming M, Ravula S, Tatishchev SF, Wang HL. Colorectal carcinoma: pathologic aspects. J Gastrointest Oncol. 2012;3(3):153-73.
Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014;383:1490-502.
Llorente JL, Lopez F, Suarez C, Hermsen MA. Sinonasal carcinoma: clinical, pathological, genetic and therapeutic advances. Nat Rev Clin Oncol. 2014;11(8):460-72.
Hoeben A, van der Winkel L, Hoebers F, Kross K, Driessen C, Slootweg P, et al. Intestinal-type sinonasal adenocarcinomas: the road to molecular diagnosis and personalized treatment. Head Neck. 2016;36(10):1564-70.
Projetti F, Mesturoux L, Coulibaly B, Durand K, Chaunavel A, Léobon S, et al. Study of MET protein levels and MET gene copy number in 72 sinonasal intestinal-type adenocarcinomas. Head Neck. 2015;36(10):1563-8.
Athar PPBSH, Norhan NBA, Bin SL, Rose IBM, Ramli RB. Metastasis to the sinonasal tract from sigmoid colon adenocarcinoma. Ann Acad Med Singap. 2008;37(9):788-90.
Cama E, Agostino S, Ricci R, Scarano E. A rare case of metastases to the maxillary sinus from sigmoid colon adenocarcinoma. ORL J Otorhinolaryngol Relat Spec. 2002;64(5):364-7.
Yom SS, Rashid A, Rosenthal DI, Elliott DD, Hanna EY, Weber RS, et al. Genetic analysis of sinonasal adenocarcinoma phenotypes: distinct alterations of histogenetic significance. Mod Pathol. 2005;18(3):315-9.
Greenberg S, Inman JC, Yung E, Choo EB. Colon mass: a rare site of metastasis for squamous cell cancer of the head and neck. J Surg Case Reports. 2020;2020:1-3.
Binazzi A, Ferrante P, Marinaccio A. Occupational exposure and sinonasal cancer: a systematic review and meta-analysis. BMC Cancer. 2015;15(1):49.
Bushnell B. BBMap. sourceforge.net/projects/bbmap/.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.
DePristo M, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variantion discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491-8.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;9(1):297-303.
Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923-30.
Tuxen IV, Rohrberg KS, Oestrup O, Ahlborn LB, Schmidt AY, Spanggaard I, et al. Copenhagen prospective personalized oncology (COPPO)-clinical utility of using molecular profiling to select patients to phase I trials. Clin Cancer Res. 2019;25(4):1239-47.
Llorente JL, Pérez-Escuredo J, Alvarez-Marcos C, Suárez C, Hermsen M. Genetic and clinical aspects of wood dust related intestinal-type sinonasal adenocarcinoma: a review. Eur Arch Oto-Rhino-Laryngology. 2009;266(1):1-7.
Turashvili G, Yang W, McKinney S, Kalloger S, Gale N, Ng Y, et al. Nucleic acid quantity and quality from paraffin blocks: defining optimal fixation, processing and DNA/RNA extraction techniques. Exp Mol Pathol. 2012;92(1):33-43.
Lee JR, Kwon CH, Choi Y, Park HJ, Kim HS, Jo HJ, et al. Transcriptome analysis of paired primary colorectal carcinoma and liver metastases reveals fusion transcripts and similar gene expression profiles in primary carcinoma and liver metastases. BMC Cancer. 2016;16(1):1-11.
Tripodi D, Quemener S, Renaudin K, Ferron C, Malard O, Guisle-Marsollier I, et al. Gene expression profiling in sinonasal adenocarcinoma. BMC Med Genet. 2009;2:65.
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science (80-). 2015;347(6220):395-403. https://doi.org/10.1126/science.1260419.
Martinez-Useros J, Garcia-Carbonero N, Li W, Fernandez-Aceñero MJ, Cristobal I, Rincon R, et al. UNR/CSDE1 expression is critical to maintain invasive phenotype of colorectal cancer through regulation of c-MYC and epithelial-to-mesenchymal transition. J Clin Med. 2019;8(4):560.
Donhuijsen K, Kollecker I, Petersen P, Gassler N, Schulze J, Schroeder H-G. Metastatic behaviour of sinonasal adenocarcinomas of the intestinal type (ITAC). Eur Arch Otorhinolaryngol. 2016;273(3):649-54.
Hugen N, Van de Velde CJH, De Wilt JHW, Nagtegaal ID. Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann Oncol. 2014;25(3):651-7.
Zhang X, Ren D, Guo L, Wang L, Wu S, Lin C, et al. Thymosin beta 10 is a key regulator of tumorigenesis and metastasis and a novel serum marker in breast cancer. Breast Cancer Res. 2017;19:1-15.
Santelli G, Califano D, Chiappetta G, Vento MT, Bartoli PC, Zullo F, et al. Thymosin β-10 gene overexpression is a general event in human. Carcinogenesis. 1999;155(3):799-804.
Alldinger I, Dittert D, Peiper M. Gene expression analysis of pancreatic cell lines reveals genes overexpressed in pancreatic cancer. Pancreatology. 2005;5(4-5):370-9.
Hurst CD, Alder O, Platt FM, Droop A, Stead LF, Burns JE, et al. Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell. 2017;32(5):701-715.e7.
Cregan S, Breslin M, Roche G, Wennstedt S, MacDonagh L, Albadri C, et al. Kdm6a and Kdm6b: altered expression in malignant pleural mesothelioma. Int J Oncol. 2017;50(3):1044-52.
Arcipowski KM, Martinez CA, Ntziachristos P. Histone demethylases in physiologi and cancer: a tale of two enzymes, JMJD3 and UTX. Curr Opin Genet Dev. 2016;36:59-67.
Terashima M, Ishimura A, Wanna-udom S, Suzuki T. Epigenetic regulation of epithelial-mesenchymal transition by KDM6A histone demethylase in lung cancer cells. Biochem Biophys Res Commun. 2017;490(4):1407-13.
Zha L, Cao Q, Cui X, Li F, Liang H, Xue B, et al. Epigenetic regulation of E-cadherin expression by the histone demethylase UTX in colon cancer cells. Med Oncol. 2016;33(3):1-11.
Limb J, Yoon S, Lee KE, Kim BH, Lee S, Bae YS, et al. Regulation of megakaryocytic differentiation of K562 cells by FosB, a member of the Fos family of AP-1 transcription factors. Cell Mol Life Sci. 2009;66:1962-73.
Hyakusoku H, Sano D, Takahashi H, Hatano T, Isono Y, Shimada S, et al. JunB promotes cell invasion, migration and distant metastasis of head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2016;35:1-12.
Fittall MW, Mifsud W, Pillay N, Ye H, Strobl AC, Verfaillie A, et al. Recurrent rearrangements of FOS and FOSB de fi ne osteoblastoma. Nat Commun. 2018;9:1-6.
Gervasi M, Bianchi-Smiraglia A, Cummings M, Zheng Q, Wang D, Liu S, et al. JunB contributes to Id2 repression and the epithelial-mesenchymal transition in response to transforming growth factor-β. J Cell Biol. 2012;196(5):589-603.
Gordon JAR, Sodek J, Hunter GK, Goldberg HA. Bone sialoprotein stimulates focal adhesion-related signaling pathways: role in migration and survival of breast and prostate cancer cells. J Cell Biochem. 2009;107(6):1118-28.
Xu T, Qin R, Zhou J, Yan Y, Lu Y, Zhang X, et al. High bone sialoprotein (BSP) expression correlates with increased tumor grade and predicts a poorer prognosis of high-grade glioma patients. PLoS One. 2012;7(10):e48415.
Mawas AS, Amatya VJ, Kushitani K, Kai Y, Miyata Y, Okada M, et al. MUC4 immunohistochemistry is useful in distinguishing epithelioid mesothelioma from adenocarcinoma and squamous cell carcinoma of the lung. Sci Rep. 2018;8(1):2-9.
Macha MA, Rachagani S, Pai P, Gupta S, Lydiatt WM, Smith RB, et al. MUC4 regulates cellular senescence in head and neck squamous cell carcinoma (HNSCC) through p16/Rb pathway. Oncogene. 2015;34(13):1698-708.
Jahan R, Macha MA, Rachagani S, Das S, Smith LM, Kaur S, et al. Axed MUC4 (MUC4/X) aggravates pancreatic malignant phenotype by activating integrin-β1/FAK/ERK pathway. Biochim Biophys Acta Mol basis Dis. 2018;1864(8):2538-49.
Xu D, Liu S, Zhang L, Song L. MiR-211 inhibits invasion and epithelial-to-mesenchymal transition (EMT) of cervical cancer cells via targeting MUC4. Biochem Biophys Res Commun. 2017;485(2):556-62.
Vincent A, Ducourouble M-P, Van Seuningen I. Epigenetic regulation of the human mucin gene MUC4 in epithelial cancer cell lines involves both DNA methylation and histone modifications mediated by DNA methyltransferases and histone deacetylases. FASEB J. 2008;22(8):3035-45.
Mercogliano MF, Inurrigarro G, De Martino M, Venturutti L, Rivas MA, Cordo-Russo R, et al. Invasive micropapillary carcinoma of the breast overexpresses MUC4 and is associated with poor outcome to adjuvant trastuzumab in HER2-positive breast cancer. BMC Cancer. 2017;17(1):1-8.
Kong X, Zhao Y, Li X, Tao Z, Hou M, Ma H. Overexpression of HIF-2a-dependent NEAT1 promotes the progression of non-small cell lung cancer through miR-1013p/SOX9/Wnt/β-catenin signal pathway. Cell Physiol Biochem. 2019;52(3):368-81.
Li P, Huang R, Huang T, Cheng S, Chen Y, Wang Z. Long non-coding RNA NEAT1 promotes proliferation, migration and invasion of human osteosarcoma cells. Int J Med Sci. 2018;15(11):1227-34.
Zhou W, Chen X, Hu Q, Chen X, Chen Y, Huang L. Galectin-3 activates TLR4/NF-ΚB signaling to promote lung adenocarcinoma cell proliferation through activating lncRNA-NEAT1 expression. BMC Cancer. 2018;18(1):1-14.
Zhong F, Zhang W, Cao Y, Wen Q, Cao Y, Lou B, et al. LncRNA NEAT1 promotes colorectal cancer cell proliferation and migration via regulating glial cell-derived neurotrophic factor by sponging miR-196a-5p. Acta Biochim Biophys Sin Shanghai. 2018;50(12):1190-9.
Yu HM, Wang C, Yuan Z, Chen GL, Ye T, Yang BW. LncRNA NEAT1 promotes the tumorigenesis of colorectal cancer by sponging miR-193a-3p. Cell Prolif. 2019;52(1):1-10.
Wu G, Guo Z, Chang X, Kim MS, Nagpal JK, Liu J, et al. LOXL1 and LOXL4 are epigenetically silenced and can inhibit Ras/extracellular signal-regulated kinase signaling pathway in human bladder cancer. Cancer Res. 2007;67(9):4123-9.
Tian M, Liu W, Jin L, Jiang X, Yang L, Ding Z, et al. LOXL4 is downregulated in hepatocellular carcinoma with a favorable prognosis. Int J Clin Exp Pathol. 2015;8(4):3892-900.
Scola N, Görögh T. LOXL4 as a selective molecular marker in primary and metastatic head/neck carcinoma. Anticancer Res. 2010;30(11):4567-71.
Valente D, Bossi G, Moncada A, Tornincasa M, Indelicato S, Piscuoglio S, et al. HIPK2 deficiency causes chromosomal instability by cytokinesis failure and increases tumorigenicity. Oncotarget. 2015;6(12):10320-34.
Kwon MJ, Kang SY, Nam ES, Cho SJ, Rho Y-S. HIPK2 overexpression and its prognostic role in human papillomavirus-positive tonsillar squamous cell carcinoma. Biomed Res Int. 2017;2017:1-10.
D'Orazi G, Sciulli MG, Di Stefano V, et al. Homeodomain-interacting protein kinase-2 restrains cytosolic phospholipase A2-dependent prostaglandin E2 generation in human colorectal cancer cells. Clin Cancer Res. 2006;12(3 I):735-741.
Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y. Colorectal cancer: genetics of development and metastasis. J Gastroenterol. 2006;41(3):185-92.
Ioana M, Angelescu C, Burada F, et al. MMR gene expression pattern in sporadic colorectal cancer. J Gastrointestin Liver Dis. 2010;19(2):155-9.
Dong P, Xiong Y, Yue J, Hanley SJB, Kobayashi N, Todo Y, Watari H Long non-coding RNA NEAT1: a novel target for diagnosis and therapy in human tumors. Front Genet 2018;9(OCT):1-13.
فهرسة مساهمة: Keywords: Sinonasal; cancer; carcinoma; genomics; intestinal-type adenocarcinoma
المشرفين على المادة: 0 (Biomarkers, Tumor)
تواريخ الأحداث: Date Created: 20220606 Date Completed: 20220805 Latest Revision: 20220805
رمز التحديث: 20240628
DOI: 10.1111/apm.13252
PMID: 35662259
قاعدة البيانات: MEDLINE
الوصف
تدمد:1600-0463
DOI:10.1111/apm.13252