دورية أكاديمية

Effect of Selenium Nanoparticles and Chitosan on Production Performance and Antioxidant Integrity of Heat-Stressed Broiler.

التفاصيل البيبلوغرافية
العنوان: Effect of Selenium Nanoparticles and Chitosan on Production Performance and Antioxidant Integrity of Heat-Stressed Broiler.
المؤلفون: Lochi GM; Department of Anatomy and Histology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan., Shah MG; Department of Anatomy and Histology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan., Gandahi JA; Department of Anatomy and Histology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan. drgandahi@sau.edu.pk., Gadahi JA; Department of Veterinary Parasitology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan., Hadi SA; Department of Anatomy and Histology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan., Farooq T; Department of Anatomy and Histology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan., Vistro WA; Department of Anatomy and Histology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tando Jam, Tando Jam, Pakistan., Rahmani MM; Veterinary Science Faculty, Nangarhar University, Jalalabad, Nangarhar Province, Afghanistan.
المصدر: Biological trace element research [Biol Trace Elem Res] 2023 Apr; Vol. 201 (4), pp. 1977-1986. Date of Electronic Publication: 2022 Jun 08.
نوع المنشور: Journal Article; Randomized Controlled Trial, Veterinary
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 7911509 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0720 (Electronic) Linking ISSN: 01634984 NLM ISO Abbreviation: Biol Trace Elem Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London, Clifton, N. J.] Humana Press.
مواضيع طبية MeSH: Chitosan*/pharmacology , Selenium*/pharmacology, Animals ; Animal Feed ; Antioxidants ; Body Weight ; Chickens ; Diet/veterinary ; Dietary Supplements ; Heat-Shock Response
مستخلص: In this study, 336-day-old corn cob broilers were bought for the poultry experimental station during the months of May and June 2021. Before the arrival of chicks, the brooders, chick feeders, drinkers, humidity, temperature, and feeding management were controlled according to scientific patterns. These birds were randomly divided into seven groups and six replications of eight birds, viz. Group-A (positive control on basal diet only), Group-B (negative control on basal diet and HS), group-C (basal diet + simple Se 0.3 mg/kg feed), Group-D (basal diet + SeNP 0.3 mg/kg feed + HS), Group-E (BD + HS + chitosan), Group-F (BD + Se + COS), and Group-G (nano Se with chitosan 0.3 mg/kg + BD + HS). On the 42 nd day of research, two birds were selected from each replication and sacrificed after blood collection. The initial data related to feeding intake, live body weight, and feed conversion ratio (FCR) were collected before slaughter. The intestinal samples were collected and immediately transferred to formalin after grass morphometry. The live body weight, FCR, feed intake, intestinal histomorphology, relative organ weight, and antioxidant parameters like MDA, SOD, and GPX were significant (P > 0.005) in all groups, with Group-G at the highest, followed by Groups-F, E, D, C, A, and B. Group-B (negative control group) was the most affected group in all aspects because of heat stress and only basal diet. It was concluded that heat stress highly causes a loss in performance, intestinal gross morphology, and histology in poultry, and increases stress conditions, whereas the selenium nanoparticle works to improve the body weight, FCR, and intestinal parameters.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: St-Pierre N, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by US livestock industries. J Dairy Sci 86:E52–E77. (PMID: 10.3168/jds.S0022-0302(03)74040-5)
Leon LR, DuBose DA, Mason CW (2005) Heat stress induces a biphasic thermoregulatory response in mice. American Journal of Physiology-Regulatory, Integrative and Comparative. Physiology 288(1):R197–R204.
Mahmoud E-D Ijiri HD, Ebeid TA, Ohtsuka A (2016) Effects of dietary nano-selenium supplementation on growth performance, antioxidative status, and immunity in broiler chickens under thermoneutral and high ambient temperature conditions. J Poultry Sci 0150133.
Zaboli G, Huang X, Feng X, Ahn DU (2019) How can heat stress affect chicken meat quality?–a review. Poult Sci 98(3):1551–1556. (PMID: 3016973510.3382/ps/pey399)
Lin H, Jiao H, Buyse J, Decuypere E (2006) Strategies for preventing heat stress in poultry. World’s Poult Sci J 62(1):71–86. (PMID: 10.1079/WPS200585)
Donkoh A (1989) Ambient temperature: a factor affecting performance and physiological response of broiler chickens. Int J Biometeorol 33(4):259–265. (PMID: 261337110.1007/BF01051087)
Saeed M, Babazadeh D, Naveed M, Arain MA, Hassan FU, Chao S (2017) Reconsidering betaine as a natural anti-heat stress agent in poultry industry: a review. Trop Anim Health Prod 49(7):1329–1338. (PMID: 2873376210.1007/s11250-017-1355-z)
Farooqi H, Khan M, Khan M, Rabbani M, Pervez K, Khan J (2005) Evaluation of betaine and vitamin C in alleviation of heat stress in broilers. Int J Agric Biol 5:744–746.
Wang ZL (2001) Characterization of nanophase materials. Particle & Particle Systems Characterization: Measurement and Description of Particle Properties and Behavior in Powders and Other Disperse Systems 18(3):142–165. (PMID: 10.1002/1521-4117(200110)18:3<142::AID-PPSC142>3.0.CO;2-N)
Thulasi A, Rajendran D, Jash S, Selvaraju S, Jose VL, Velusamy S, Mathivanan S (2013) Nanobiotechnology in animal nutrition, Animal nutrition and reproductive physiology (recent concepts), 1st ed.; Sampath KT, Ghosh J, Eds. 499-516.
Tran PA, Webster TJ (2011) Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine 6:1553. (PMID: 218450453152473)
Council NR, NRC. (1994) Nutrient requirements of poultry. National Academy Press, Washington, DC.
Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632. (PMID: 10.1016/j.progpolymsci.2006.06.001)
Xu Y, Shi B, Yan S, Li J, Li T, Guo Y, Guo X (2014) Effects of chitosan supplementation on the growth performance, nutrient digestibility, and digestive enzyme activity in weaned pigs. Czech J Anim Sci 59(4):156–163. (PMID: 10.17221/7339-CJAS)
Khambualai O, Yamauchi K, Tangtaweewipat S, Cheva-Isarakul B (2009) Growth performance and intestinal histology in broiler chickens fed with dietary chitosan. Br Poult Sci 50(5):592–597. (PMID: 1990463810.1080/00071660903247182)
Shi-bin Y, Hong C (2012) Effects of dietary supplementation of chitosan on growth performance and immune index in ducks. Afr J Biotechnol 11(14):3490–3495.
Wang R, Liang R, Lin H, Zhu L, Zhang Y, Mao Y, Dong P, Niu L, Zhang M, Luo X (2017) Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism. Poult Sci 96(3):738–746. (PMID: 2770292410.3382/ps/pew329)
Lu Z, He X, Ma B, Zhang L, Li J, Jiang Y, Zhou G, Gao F (2017) Chronic heat stress impairs the quality of breast-muscle meat in broilers by affecting redox status and energy-substance metabolism. J Agric Food Chem 65(51):11251–11258. (PMID: 2921232510.1021/acs.jafc.7b04428)
Lara LJ, Rostagno MH (2013) Impact of heat stress on poultry production. Animals 3(2):356–369. (PMID: 26487407449439210.3390/ani3020356)
Azad M, Kikusato M, Maekawa T, Shirakawa H, Toyomizu M (2010) Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comp Biochem Physiol A Mol Integr Physiol 155(3):401–406. (PMID: 2003675010.1016/j.cbpa.2009.12.011)
Xu Y, Wang Z, Qin Z, Yan S, Shi B (2018) Effects of chitosan addition on growth performance, diarrhoea, anti-oxidative function and serum immune parameters of weaned piglets. South African J Animal Sci 48(1):142–150. (PMID: 10.4314/sajas.v48i1.16)
Yang L, Tan G-Y, Fu Y-Q, Feng J-H, Zhang M-H (2010) Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comparative Biochem Physiol Part C: Toxicol Pharmacol 151(2):204–208.
Dlouha G, Sevcikova S, Dokoupilova A, Zita L, Heindl J, Skrivan M (2008) Effect of dietary selenium sources on growth performance, breast muscle selenium, glutathione peroxidase activity and oxidative stability in broilers. Czech J Animal Sci 53(6):265. (PMID: 10.17221/361-CJAS)
Aparna N, Karunakaran R (2016) Effect of selenium nanoparticles supplementation on oxidation resistance of broiler chicken. Indian J Sci Technol 9(S1):1–5. (PMID: 10.17485/ijst/2016/v9iS1/106334)
Surai PF (2002) Natural antioxidants in avian nutrition and reproduction, Nottingham University Press Nottingham.
Cai S, Wu C, Gong L, Song T, Wu H, Zhang L (2012) Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult Sci 91(10):2532–2539. (PMID: 2299153910.3382/ps.2012-02160)
Aviagen T (2014) Ross 308 broiler nutrition specifications. Aviagen Group, Huntsville.
Dhawan G, Singh I, Dhawan U, Kumar P (2021) Synthesis and characterization of nanoselenium: a step-by-step guide for undergraduate students. J Chem Educ 98(9):2982–2989. (PMID: 10.1021/acs.jchemed.0c01467)
Boroumand S, Safari M, Shaabani E, Shirzad M, Faridi-Majidi R (2019) Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Mater Res Express 6(8):0850d8. (PMID: 10.1088/2053-1591/ab2558)
Safdari-Rostamabad M, Hosseini-Vashan SJ, Perai AH, Sarir H (2017) Nanoselenium supplementation of heat-stressed broilers: effects on performance, carcass characteristics, blood metabolites, immune response, antioxidant status, and jejunal morphology. Biol Trace Elem Res 178(1):105–116. (PMID: 2787851310.1007/s12011-016-0899-5)
Bami MK, Afsharmanesh M, Salarmoini M, Ebrahimnejad H (2021) Effects of selenium-chitosan on growth performance, carcass traits, meat quality, and blood indices of broiler chickens. Livest Sci 250:104562. (PMID: 10.1016/j.livsci.2021.104562)
Bakhshalinejad R, Hassanabadi A, Swick RA (2019) Dietary sources and levels of selenium supplements affect growth performance, carcass yield, meat quality and tissue selenium deposition in broilers. Animal Nutrition 5(3):256–263. (PMID: 31528727673749710.1016/j.aninu.2019.03.003)
Zhou X, Wang Y (2011) Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poult Sci 90(3):680–686. (PMID: 2132524210.3382/ps.2010-00977)
Cheng K, Song Z, Li S, Yan E, Zhang H, Zhang L, Wang C, Wang T (2019) Effects of resveratrol on intestinal oxidative status and inflammation in heat-stressed rats. J Therm Biol 85:102415. (PMID: 3165775610.1016/j.jtherbio.2019.102415)
Yang Y, Meng F, Wang P, Jiang Y, Yin Q, Chang J, Zuo R, Zheng Q, Liu J (2012) Effect of organic and inorganic selenium supplementation on growth performance, meat quality and antioxidant property of broilers. Afr J Biotechnol 11(12):3031–3036.
Perić L, Milošević N, Žikić D, Kanački Z, Džinić N, Nollet L, Spring P (2009) Effect of selenium sources on performance and meat characteristics of broiler chickens. J Appl Poult Res 18(3):403–409. (PMID: 10.3382/japr.2008-00017)
Tang D, Li Z, Mahmood T, Liu D, Hu Y, Guo Y (2020) The association between microbial community and ileal gene expression on intestinal wall thickness alterations in chickens. Poult Sci 99(4):1847–1861. (PMID: 32241465758772210.1016/j.psj.2019.10.029)
Nuengjamnong C, Angkanaporn K (2018) Efficacy of dietary chitosan on growth performance, haematological parameters and gut function in broilers. Ital J Anim Sci 17(2):428–435. (PMID: 10.1080/1828051X.2017.1373609)
Bami MK, Afsharmanesh M, Espahbodi M, Esmaeilzadeh E (2022) Effects of dietary nano-selenium supplementation on broiler chicken performance, meat selenium content, intestinal microflora, intestinal morphology, and immune response. J Trace Elem Med Biol 69:126897. (PMID: 10.1016/j.jtemb.2021.126897)
Habibian M, Sadeghi G, Ghazi S, Moeini MM (2015) Selenium as a feed supplement for heat-stressed poultry: a review. Biol Trace Elem Res 165(2):183–193. (PMID: 2572172110.1007/s12011-015-0275-x)
Zhou TX, Chen YJ, Yoo J, Huang Y, Lee J, Jang H, Shin S, Kim H, Cho J, Kim I (2009) Effects of chitooligosaccharide supplementation on performance, blood characteristics, relative organ weight, and meat quality in broiler chickens. Poult Sci 88(3):593–600. (PMID: 1921153010.3382/ps.2008-00285)
Seidavi AR (2018) Effect of different levels of nano-selenium on performance, blood parameters, immunity and carcass characteristics of broilerchickens. Poultry Sci J 6(1):99–108.
Deng X, Li X, Liu P, Yuan S, Zang J, Li S, Piao X (2008) Effect of chito-oligosaccharide supplementation on immunity in broiler chickens. Asian Australas J Anim Sci 21(11):1651–1658. (PMID: 10.5713/ajas.2008.80056)
Hawkes WC, Keim NL (2003) Dietary selenium intake modulates thyroid hormone and energy metabolism in men. J Nutr 133(11):3443–3448. (PMID: 1460805610.1093/jn/133.11.3443)
Chang Q, Lu Y, Lan R (2020) Chitosan oligosaccharide as an effective feed additive to maintain growth performance, meat quality, muscle glycolytic metabolism, and oxidative status in yellow-feather broilers under heat stress. Poult Sci 99(10):4824–4831. (PMID: 32988519759833810.1016/j.psj.2020.06.071)
Wang Y-B, Xu B-H (2008) Effect of different selenium source (sodium selenite and selenium yeast) on broiler chickens. Anim Feed Sci Technol 144(3–4):306–314. (PMID: 10.1016/j.anifeedsci.2007.10.012)
Choct M, Naylor A, Reinke N (2004) Selenium supplementation affects broiler growth performance, meat yield and feather coverage. Br Poult Sci 45(5):677–683. (PMID: 1562322310.1080/00071660400006495)
Zamani Moghaddam A, Mehraei Hamzekolaei M, Khajali F, Hassanpour H (2017) Role of selenium from different sources in prevention of pulmonary arterial hypertension syndrome in broiler chickens. Biol Trace Elem Res 180(1):164–170. (PMID: 2831707810.1007/s12011-017-0993-3)
Pawar S, Sajjanar B, Lonkar V, Kurade N, Kadam A, Nirmal A, Brahmane M, Bal S (2016) Assessing and mitigating the impact of heat stress in poultry. Adv Anim Vet Sci 4(6):332–341. (PMID: 10.14737/journal.aavs/2016/4.6.332.341)
Sahin K, Sahin N, Kucuk O, Hayirli A, Prasad A (2009) Role of dietary zinc in heat-stressed poultry: a review. Poult Sci 88(10):2176–2183. (PMID: 1976287310.3382/ps.2008-00560)
Xiao X, Yuan D, Wang Y-X, Zhan X-A (2016) The protective effects of different sources of maternal selenium on oxidative stressed chick embryo liver. Biol Trace Elem Res 172(1):201–208. (PMID: 2655495010.1007/s12011-015-0541-y)
Wang J, Peng K (2008) Developmental morphology of the small intestine of African ostrich chicks. Poult Sci 87(12):2629–2635. (PMID: 1903882010.3382/ps.2008-00163)
فهرسة مساهمة: Keywords: Antioxidant ; Gut health; Heat stress; Prebiotic; Selenium nanoparticles
المشرفين على المادة: 0 (Antioxidants)
9012-76-4 (Chitosan)
H6241UJ22B (Selenium)
تواريخ الأحداث: Date Created: 20220608 Date Completed: 20230222 Latest Revision: 20230222
رمز التحديث: 20230223
DOI: 10.1007/s12011-022-03262-y
PMID: 35676590
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0720
DOI:10.1007/s12011-022-03262-y