دورية أكاديمية

Microbial maintenance energy quantified and modeled with microcalorimetry.

التفاصيل البيبلوغرافية
العنوان: Microbial maintenance energy quantified and modeled with microcalorimetry.
المؤلفون: Hunt KA; Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA., von Netzer F; Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA., Gorman-Lewis D; Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA., Stahl DA; Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA.
المصدر: Biotechnology and bioengineering [Biotechnol Bioeng] 2022 Sep; Vol. 119 (9), pp. 2413-2422. Date of Electronic Publication: 2022 Jun 23.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 7502021 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0290 (Electronic) Linking ISSN: 00063592 NLM ISO Abbreviation: Biotechnol Bioeng Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Hoboken, NJ : Wiley
Original Publication: New York, Wiley.
مواضيع طبية MeSH: Batch Cell Culture Techniques*, Biomass ; Temperature ; Thermodynamics
مستخلص: Refining the energetic costs of cellular maintenance is essential for predicting microbial growth and survival in the environment. Here, we evaluate a simple batch culture method to quantify energy partitioning between growth and maintenance using microcalorimetry and thermodynamic modeling. The constants derived from the batch culture system were comparable to those that have been reported from meta-analyses of data derived from chemostat studies. The model accurately predicted temperature-dependent biomass yield and the upper temperature limit of growth for Desulfovibrio alaskensis G20, suggesting the method may have broad application. An Arrhenius temperature dependence for the specific energy consumption rate, inferred from substrate consumption and heat evolution, was observed over the entire viable temperature range. By combining this relationship for specific energy consumption rates and observed specific growth rates, the model describes an increase in nongrowth associated maintenance at higher temperatures and the corresponding decrease in energy available for growth. This analytical and thermodynamic formulation suggests that simply monitoring heat evolution in batch culture could be a useful complement to the recognized limitations of estimating maintenance using extrapolation to zero growth in chemostats.
(© 2022 Wiley Periodicals LLC.)
References: Beeftink, H. H., van der Heijden, R. T. J. M., & Heijnen, J. J. (1990). Maintenance requirements: Energy supply from simultaneous endogenous respiration and substrate consumption. FEMS Microbiology Letters, 73(3), 203-209. https://doi.org/10.1016/0378-1097(90)90731-5.
van Bodegom, P. (2007). Microbial maintenance: A critical review on its quantification. Microbial Ecology, 53(4), 513-523. https://doi.org/10.1007/s00248-006-9049-5.
Calabrese, S., Chakrawal, A., Manzoni, S., & Van Cappellen, P. (2021). Energetic scaling in microbial growth. Proceedings of the National Academy of Sciences of the United States of America, 118(47), e2107668118. https://doi.org/10.1073/pnas.2107668118.
Cline, J. D. (1969). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography, 14(3), 454-458.
Fagerbakke, K. M., Heldal, M., & Norland, S. (1996). Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquatic Microbial Ecology, 10(1), 15-27. https://doi.org/10.3354/ame010015.
Gibbons, S. M., Feris, K., McGuirl, M. A., Morales, S. E., Hynninen, A., Ramsey, P. W., & Gannon, J. E. (2011). Use of microcalorimetry to determine the costs and benefits to Pseudomonas putida strain KT2440 of harboring cadmium efflux genes. Applied and Environmental Microbiology, 77(1), 108-113. https://doi.org/10.1128/AEM.01187-10.
Gustafsson, L. (1991). Microbiological calorimetry. Thermochimica Acta, 193, 145-171. https://doi.org/10.1016/0040-6031(91)80181-H.
Harder, J. (1997). Species-independent maintenance energy and natural population sizes. FEMS Microbiology Ecology, 23(1), 39-44. https://doi.org/10.1111/j.1574-6941.1997.tb00389.x.
Heijnen, J. J., & Van Dijken, J. P. (1992). In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnology and Bioengineering, 39(8), 833-858. https://doi.org/10.1002/bit.260390806.
Heijnen, J. J., & Kleerebezem, R. (2009). Bioenergetics of microbial growth, Encyclopedia of industrial biotechnology. John Wiley & Sons, Inc.
Helgeson, H. C. (1969). Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American Journal of Science, 267(7), 729-804. https://doi.org/10.2475/ajs.267.7.729.
Hillesland, K. L., & Stahl, D. A. (2010). Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2124-2129. https://doi.org/10.1073/pnas.0908456107.
Hoehler, T. M., & Jorgensen, B. B. (2013). Microbial life under extreme energy limitation. Nature Reviews Microbiology, 11(2), 83-94. https://doi.org/10.1038/nrmicro2939.
Hunt, K. A., Forbes, J., Taub, F., Elliott, N., Hardwicke, J., Petersen, R., Stopnisek, N., & Stahl, D. A. (2021). An automated multiplexed turbidometric and data collection system for measuring growth kinetics of anaerobes dependent on gaseous substrates. Journal of Microbiological Methods, 188, 106294. https://doi.org/10.1016/j.mimet.2021.106294.
Johnson, J. W., Oelkers, E. H., & Helgeson, H. C. (1992). SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 C. Computers & Geosciences, 18(7), 899-947.
Kahm, M., Hasenbrink, G., Lichtenberg-Frate, H., Ludwig, J., & Kschischo, M. (2010). grofit: Fitting biological growth curves with R. Journal of Statistical Software, 33(7), 1-21.
Knoblauch, C., & Jørgensen, B. B. (1999). Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environmental Microbiology, 1(5), 457-467.
LaRowe, D. E., Dale, A. W., Amend, J. P., & Van Cappellen, P. (2012). Thermodynamic limitations on microbially catalyzed reaction rates. Geochimica et Cosmochimica Acta, 90, 96-109. https://doi.org/10.1016/j.gca.2012.05.011.
Lin, B., Westerhoff, H. V., & Röling, W. F. M. (2009). How Geobacteraceae may dominate subsurface biodegradation: Physiology of Geobacter metallireducens in slow-growth habitat-simulating retentostats. Environmental Microbiology, 11(9), 2425-2433. https://doi.org/10.1111/j.1462-2920.2009.01971.x.
Marr, A. G., Nilson, E. H., & Clark, D. J. (1963). The maintenance requirement of Escherichia coli. Annals of the New York Academy of Sciences, 102(3), 536-548. https://doi.org/10.1111/j.1749-6632.1963.tb13659.x.
McTee, M. R., Gibbons, S. M., Feris, K., Gordon, N. S., Gannon, J. E., & Ramsey, P. W. (2013). Heavy metal tolerance genes alter cellular thermodynamics in Pseudomonas putida and river pseudomonas spp. and influence amebal predation. FEMS Microbiology Letters, 347(2), 97-106. https://doi.org/10.1111/1574-6968.12226.
Meyer, B., Kuehl, J., Deutschbauer, A. M., Price, M. N., Arkin, A. P., & Stahl, D. A. (2013). Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth. Journal of Bacteriology, 195(5), 990-1004. https://doi.org/10.1128/jb.01959-12.
Muller, A. L., Gu, W., Patsalo, V., Deutzmann, J. S., Williamson, J. R., & Spormann, A. M. (2021). An alternative resource allocation strategy in the chemolithoautotrophic archaeon Methanococcus maripaludis. Proceedings of the National Academy of Sciences of the United States of America, 118(16), e2025854118. https://doi.org/10.1073/pnas.2025854118.
Müller, R. H., & Babel, W. (1996). Measurement of growth at very low rates (µ ≥ 0), an approach to study the energy requirement for the survival of Alcaligenes eutrophus JMP 134. Applied and Environmental Microbiology, 62(1), 147-151.
Parkhurst, D. L., & Appelo, C. (1999). User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations, Report, 99-4259.
Pirt, S. J. (1965). The maintenance energy of bacteria in growing cultures. Proceedings of the Royal Society of London, Series B: Biological Sciences, 163(991), 224-231. https://doi.org/10.1098/rspb.1965.0069.
Pirt, S. J. (1982). Maintenance energy: A general model for energy-limited and energy-sufficient growth. Archives of Microbiology, 133(4), 300-302. https://doi.org/10.1007/bf00521294.
Price, P. B., & Sowers, T. (2004). Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4631-4636. https://doi.org/10.1073/pnas.0400522101.
Qin, W., Amin, S. A., Martens-Habbena, W., Walker, C. B., Urakawa, H., Devol, A. H., Ingalls, A.E., Armbrust, E.V., & Stahl, D.A. (2014). Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proceedings of the National Academy of Sciences of the United States of America, 111(34), 12504-12509. https://doi.org/10.1073/pnas.1324115111.
Robador, A., LaRowe, D. E., Finkel, S. E., Amend, J. P., & Nealson, K. H. (2018). Changes in microbial energy metabolism measured by nanocalorimetry during growth phase transitions. Frontiers in Microbiology, 9, 109. https://doi.org/10.3389/fmicb.2018.00109.
Sagemann, J., Jørgensen, B. B., & Greeff, O. (1998). Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiology Journal, 15(2), 85-100. https://doi.org/10.1080/01490459809378067.
Shock, E. L. (1995). Organic acids in hydrothermal solutions; standard molal thermodynamic properties of carboxylic acids and estimates of dissociation constants at high temperatures and pressures. American Journal of Science, 295(5), 496-580. https://doi.org/10.2475/ajs.295.5.496.
Shock, E. L., Helgeson, H. C., & Sverjensky, D. A. (1989). Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochimica et Cosmochimica Acta, 53(9), 2157-2183. https://doi.org/10.1016/0016-7037(89)90341-4.
Shock, E. L., Sassani, D. C., Willis, M., & Sverjensky, D. A. (1997). Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochimica et Cosmochimica Acta, 61(5), 907-950. https://doi.org/10.1016/S0016-7037(96)00339-0.
Smeaton, C. M., & Van Cappellen, P. (2018). Gibbs Energy Dynamic Yield Method (GEDYM): Predicting microbial growth yields under energy-limiting conditions. Geochimica et Cosmochimica Acta, 241, 1-16. https://doi.org/10.1016/j.gca.2018.08.023.
Smith, J. N., & Shock, E. L. (2007). A thermodynamic analysis of microbial growth experiments. Astrobiology, 7(6), 891-904. https://doi.org/10.1089/ast.2006.0118.
von Stockar, U., & Liu, J. S. (1999). Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1412(3), 191-211. https://doi.org/10.1016/S0005-2728(99)00065-1.
Tijhuis, L., Van Loosdrecht, M. C. M., & Heijnen, J. J. (1993). A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnology and Bioengineering, 42(4), 509-519. https://doi.org/10.1002/bit.260420415.
Truesdell, A. H., & Jones, B. F. (1974). WATEQ, a computer program for calculating chemical equilibria of natural waters. Journal of Research of the U.S. Geological Survey, 2(2), 233-248.
Turkarslan, S., Raman, A. V., Thompson, A. W., Arens, C. E., Gillespie, M. A., von Netzer, F., Hillesland, K.L., López García de Lomana, A., Reiss, D. J., Gorman-Lewis, D., Zane, G. M., Ranish, J. A., Wall, J. D., Stahl, D. A., & Baliga, N. S. (2017). Mechanism for microbial population collapse in a fluctuating resource environment. Molecular Systems Biology, 13(3), 919. https://doi.org/10.15252/msb.20167058.
Varela, C. A., Baez, M. E., & Agosin, E. (2004). Osmotic stress response: Quantification of cell maintenance and metabolic fluxes in a lysine-overproducing strain of Corynebacterium glutamicum. Applied and Environmental Microbiology, 70(7), 4222-4229. https://doi.org/10.1128/AEM.70.7.4222-4229.2004.
Wall, J. D., Rapp-Giles, B. J., & Rousset, M. (1993). Characterization of a small plasmid from Desulfovibrio desulfuricans and its use for shuttle vector construction. Journal of Bacteriology, 175(13), 4121-4128.
Wang, G., & Post, W. M. (2012). A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling. FEMS Microbiology Ecology, 81(3), 610-617. https://doi.org/10.1111/j.1574-6941.2012.01389.x.
Wolery, T. J., & Jarek, R. (2003). Equation 3/6 Version 8.0. Retrieved from Las Vegas, NV.
Zhou, A., Lau, R., Baran, R., Ma, J., von Netzer, F., Shi, W., Gorman-Lewis, D., He, Z., Qin, Y., Shi, Z., Zane, G. M., Wu, L., Bowen, B. P., Northen, T. R., Hillesland, K. L., Stahl, D. A., Wall, J. D., Arkin, A. P., & Zhou, J. (2017). Key metabolites and mechanistic changes for salt tolerance in an experimentally evolved sulfate-reducing bacterium, Desulfovibrio vulgaris. mBio, 8(6), e01780-17. https://doi.org/10.1128/mBio.01780-17.
فهرسة مساهمة: Keywords: energy consumption; growth temperature; growth thermodynamics; growth yield; maintenance energy; microcalorimetry; sulfate reduction
تواريخ الأحداث: Date Created: 20220609 Date Completed: 20220816 Latest Revision: 20220901
رمز التحديث: 20240628
DOI: 10.1002/bit.28155
PMID: 35680566
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0290
DOI:10.1002/bit.28155