دورية أكاديمية

Lysosome lipid signalling from the periphery to neurons regulates longevity.

التفاصيل البيبلوغرافية
العنوان: Lysosome lipid signalling from the periphery to neurons regulates longevity.
المؤلفون: Savini M; Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA., Folick A; Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.; Department of Medicine, University of California San Francisco, San Francisco, CA, USA., Lee YT; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.; Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX, USA., Jin F; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA., Cuevas A; Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA., Tillman MC; Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA., Duffy JD; Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA., Zhao Q; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA., Neve IA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA., Hu PW; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA., Yu Y; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China., Zhang Q; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA., Ye Y; Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA., Mair WB; Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA., Wang J; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA., Han L; Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.; Center of Epigenetics and Disease Prevention, Institute of Bioscience and Technology, Texas A&M University, Houston, TX, USA., Ortlund EA; Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA., Wang MC; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA. wmeng@bcm.edu.; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. wmeng@bcm.edu.; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA. wmeng@bcm.edu.
المصدر: Nature cell biology [Nat Cell Biol] 2022 Jun; Vol. 24 (6), pp. 906-916. Date of Electronic Publication: 2022 Jun 09.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Macmillan Magazines Ltd Country of Publication: England NLM ID: 100890575 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4679 (Electronic) Linking ISSN: 14657392 NLM ISO Abbreviation: Nat Cell Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Macmillan Magazines Ltd., [1999-
مواضيع طبية MeSH: Caenorhabditis elegans Proteins*/genetics , Caenorhabditis elegans Proteins*/metabolism , Neuropeptides*/metabolism, 8,11,14-Eicosatrienoic Acid/metabolism ; Animals ; Caenorhabditis elegans/metabolism ; Longevity/genetics ; Lysosomes/metabolism ; Neurons/metabolism
مستخلص: Lysosomes are key cellular organelles that metabolize extra- and intracellular substrates. Alterations in lysosomal metabolism are implicated in ageing-associated metabolic and neurodegenerative diseases. However, how lysosomal metabolism actively coordinates the metabolic and nervous systems to regulate ageing remains unclear. Here we report a fat-to-neuron lipid signalling pathway induced by lysosomal metabolism and its longevity-promoting role in Caenorhabditis elegans. We discovered that induced lysosomal lipolysis in peripheral fat storage tissue upregulates the neuropeptide signalling pathway in the nervous system to promote longevity. This cell-non-autonomous regulation is mediated by a specific polyunsaturated fatty acid, dihomo-γ-linolenic acid, and LBP-3 lipid chaperone protein transported from the fat storage tissue to neurons. LBP-3 binds to dihomo-γ-linolenic acid, and acts through NHR-49 nuclear receptor and NLP-11 neuropeptide in neurons to extend lifespan. These results reveal lysosomes as a signalling hub to coordinate metabolism and ageing, and lysosomal signalling mediated inter-tissue communication in promoting longevity.
(© 2022. The Author(s).)
التعليقات: Comment in: Nat Cell Biol. 2022 Jun;24(6):808-810. (PMID: 35681007)
References: Folick, A. et al. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 347, 83–86 (2015). (PMID: 25554789442535310.1126/science.1258857)
Hughes, A. L. & Gottschling, D. E. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492, 261–265 (2012). (PMID: 23172144352183810.1038/nature11654)
Durieux, J., Wolff, S. & Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79–91 (2011). (PMID: 21215371306250210.1016/j.cell.2010.12.016)
Cao, H. et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134, 933–944 (2008). (PMID: 18805087272861810.1016/j.cell.2008.07.048)
Davis, O. B. et al. NPC1–mTORC1 signaling couples cholesterol sensing to organelle homeostasis and is a targetable pathway in Niemann–Pick type C. Dev. Cell 56, 260–276.e7 (2021). (PMID: 3330848010.1016/j.devcel.2020.11.016)
Han, S. et al. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 544, 185–190 (2017). (PMID: 28379943539127410.1038/nature21686)
Qi, W. et al. The ω‐3 fatty acid α‐linolenic acid extends Caenorhabditis elegans lifespan via NHR‐49/PPARα and oxidation to oxylipins. Aging Cell 16, 1125–1135 (2017). (PMID: 28772063559567410.1111/acel.12651)
Maxfield, F. R. in Lysosomes: Biology, Diseases, and Therapeutics (eds Maxwell, F. R. et al.) 87–100 (Wiley, 2016).
O’Rourke, E. J., Kuballa, P., Xavier, R. & Ruvkun, G. ω-6 polyunsaturated fatty acids extend life span through the activation of autophagy. Gene Dev. 27, 429–440 (2013). (PMID: 23392608358955910.1101/gad.205294.112)
Kaeberlein, T. L. et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5, 487–494 (2006). (PMID: 1708116010.1111/j.1474-9726.2006.00238.x)
Wang, M. C., O’Rourke, E. J. & Ruvkun, G. Fat metabolism links germline stem cells and longevity in C. elegans. Science 322, 957–960 (2008). (PMID: 18988854276026910.1126/science.1162011)
Ramachandran, P. V. et al. Lysosomal signaling promotes longevity by adjusting mitochondrial activity. Dev. Cell 48, 685–696.e5 (2019). (PMID: 30713071661382810.1016/j.devcel.2018.12.022)
Jacob, T. C. & Kaplan, J. M. The EGL-21 carboxypeptidase E facilitates acetylcholine release at Caenorhabditis elegans neuromuscular junctions. J. Neurosci. 23, 2122–2130 (2003). (PMID: 12657671674202710.1523/JNEUROSCI.23-06-02122.2003)
Bael, S. V. et al. Mass spectrometric evidence for neuropeptide-amidating enzymes in Caenorhabditis elegans. J. Biol. Chem. 293, 6052–6063 (2018). (PMID: 29487130591248010.1074/jbc.RA117.000731)
Husson, S. J. et al. Impaired processing of FLP and NLP peptides in carboxypeptidase E (EGL-21)-deficient Caenorhabditis elegans as analyzed by mass spectrometry. J. Neurochem. 102, 246–260 (2007). (PMID: 1756468110.1111/j.1471-4159.2007.04474.x)
Hamilton, B. et al. A systematic RNAi screen for longevity genes in C. elegans. Gene Dev. 19, 1544–1555 (2005). (PMID: 15998808117206110.1101/gad.1308205)
Pierce, S. B. et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Gene Dev. 15, 672–686 (2001). (PMID: 1127405331265410.1101/gad.867301)
Murphy, C. T., Lee, S.-J. & Kenyon, C. Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 104, 19046–19050 (2007). (PMID: 18025456214190510.1073/pnas.0709613104)
Sun, X., Chen, W.-D. & Wang, Y.-D. DAF-16/FOXO transcription factor in aging and longevity. Front. Pharm. 8, 548 (2017). (PMID: 10.3389/fphar.2017.00548)
Watts, J. L. & Browse, J. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 99, 5854–5859 (2002). (PMID: 1197204812286610.1073/pnas.092064799)
Watts, J. L., Phillips, E., Griffing, K. R. & Browse, J. Deficiencies in C20 polyunsaturated fatty acids cause behavioral and developmental defects in Caenorhabditis elegans fat-3 mutants. Genetics 163, 581–589 (2003). (PMID: 12618397146246010.1093/genetics/163.2.581)
Vásquez, V., Krieg, M., Lockhead, D. & Goodman, M. B. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. Cell Rep. 6, 70–80 (2014). (PMID: 24388754404662010.1016/j.celrep.2013.12.012)
Storch, J. & Corsico, B. The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Nutrition 28, 73–95 (2008). (PMID: 10.1146/annurev.nutr.27.061406.093710)
Furuhashi, M. & Hotamisligil, G. S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7, 489–503 (2008). (PMID: 18511927282102710.1038/nrd2589)
Fares, H. & Greenwald, I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159, 133–145 (2001). (PMID: 11560892146180410.1093/genetics/159.1.133)
Tao, L. et al. Parallel processing of two mechanosensory modalities by a single neuron in C. elegans. Dev. Cell 51, 617–631.e3 (2019). (PMID: 31735664863544810.1016/j.devcel.2019.10.008)
Taylor, S. R. et al. Molecular topography of an entire nervous system. Cell 184, 4329–4347.e23 (2021). (PMID: 3423725310.1016/j.cell.2021.06.023)
Hotamisligil, G. S. & Bernlohr, D. A. Metabolic functions of FABPs—mechanisms and therapeutic implications. Nat. Rev. Endocrinol. 11, 592–605 (2015). (PMID: 26260145457871110.1038/nrendo.2015.122)
Pan, Y. et al. Fatty acid-binding protein 5 facilitates the blood–brain barrier transport of docosahexaenoic acid. Mol. Pharm. 12, 4375–4385 (2015). (PMID: 2645544310.1021/acs.molpharmaceut.5b00580)
Ratnappan, R. et al. Germline signals deploy NHR-49 to modulate fatty-acid β-oxidation and desaturation in somatic tissues of C. elegans. PLoS Genet. 10, e1004829 (2014). (PMID: 25474470425627210.1371/journal.pgen.1004829)
Goudeau, J. et al. Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans. PLoS Biol. 9, e1000599 (2011). (PMID: 21423649305795010.1371/journal.pbio.1000599)
Heestand, B. N. et al. Dietary restriction induced longevity is mediated by nuclear receptor NHR-62 in Caenorhabditis elegans. PLoS Genet. 9, e1003651 (2013). (PMID: 23935515372352810.1371/journal.pgen.1003651)
Gems, D. et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150, 129–155 (1998). (PMID: 9725835146029710.1093/genetics/150.1.129)
Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V. & Antebi, A. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev. Cell 1, 841–851 (2001). (PMID: 1174094510.1016/S1534-5807(01)00085-5)
Varga, T., Czimmerer, Z. & Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta 1812, 1007–1022 (2011). (PMID: 21382489311799010.1016/j.bbadis.2011.02.014)
Burkewitz, K. et al. Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal. Cell 160, 842–855 (2015). (PMID: 25723162439290910.1016/j.cell.2015.02.004)
Tan, N.-S. et al. Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol. Cell. Biol. 22, 5114–5127 (2002). (PMID: 1207734013977710.1128/MCB.22.14.5114-5127.2002)
Chamoli, M. et al. Polyunsaturated fatty acids and p38-MAPK link metabolic reprogramming to cytoprotective gene expression during dietary restriction. Nat. Commun. 11, 4865 (2020). (PMID: 32978396751965710.1038/s41467-020-18690-4)
Mutlu, A. S., Gao, S. M., Zhang, H. & Wang, M. C. Olfactory specificity regulates lipid metabolism through neuroendocrine signaling in Caenorhabditis elegans. Nat. Commun. 11, 1450 (2020). (PMID: 32193370708123310.1038/s41467-020-15296-8)
Dickinson, D. J., Pani, A. M., Heppert, J. K., Higgins, C. D. & Goldstein, B. Streamlined genome engineering with a self-excising drug selection cassette. Genetics 200, 1035–1049 (2015). (PMID: 26044593457425010.1534/genetics.115.178335)
Ward, J. D. Rapid and precise engineering of the Caenorhabditis elegans genome with lethal mutation co-conversion and inactivation of NHEJ repair. Genetics 199, 363–377 (2015). (PMID: 2549164410.1534/genetics.114.172361)
Paix, A., Folkmann, A., Rasoloson, D. & Seydoux, G. High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR–Cas9 ribonucleoprotein complexes. Genetics 201, 47–54 (2015). (PMID: 26187122456627510.1534/genetics.115.179382)
Arribere, J. A. et al. Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics 198, 837–846 (2014). (PMID: 25161212422417310.1534/genetics.114.169730)
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem Phys. 37, 911–917 (1959). (PMID: 10.1139/y59-099)
Li, X. & Franke, A. A. Improved LC−MS method for the determination of fatty acids in red blood cells by LC−Orbitrap MS. Anal. Chem. 83, 3192–3198 (2011). (PMID: 21428294443925010.1021/ac103093w)
معلومات مُعتمدة: R01 HG011633 United States HG NHGRI NIH HHS; P01 AG066606 United States AG NIA NIH HHS; P40 OD010440 United States OD NIH HHS; RF1 AG062257 United States AG NIA NIH HHS; R01 AG044346 United States AG NIA NIH HHS; R01 AG045183 United States AG NIA NIH HHS; T32 GM008602 United States GM NIGMS NIH HHS; R01 CA262623 United States CA NCI NIH HHS; United States HHMI Howard Hughes Medical Institute; RF1 AG074540 United States AG NIA NIH HHS; T32 ES027801 United States ES NIEHS NIH HHS; DP1 DK113644 United States DK NIDDK NIH HHS; R01 AT009050 United States AT NCCIH NIH HHS; R03 AG070417 United States AG NIA NIH HHS
المشرفين على المادة: 0 (Caenorhabditis elegans Proteins)
0 (Neuropeptides)
FC398RK06S (8,11,14-Eicosatrienoic Acid)
تواريخ الأحداث: Date Created: 20220610 Date Completed: 20220620 Latest Revision: 20230419
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9203275
DOI: 10.1038/s41556-022-00926-8
PMID: 35681008
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4679
DOI:10.1038/s41556-022-00926-8