دورية أكاديمية

Handheld two-stroke engines as an important source of personal VOC exposure for olive farm workers.

التفاصيل البيبلوغرافية
العنوان: Handheld two-stroke engines as an important source of personal VOC exposure for olive farm workers.
المؤلفون: Arı A; Department of Environmental Engineering, Faculty of Engineering, Bolu Abant İzzet Baysal University, Bolu, Turkey. akifari@ibu.edu.tr., Arı PE; Department of Environmental Engineering, Faculty of Engineering, Bolu Abant İzzet Baysal University, Bolu, Turkey., İlhan SÖ; Department of Environmental Engineering, Faculty of Engineering, Eskişehir Technical University, 26555, Eskişehir, Turkey., Gaga EO; Department of Environmental Engineering, Faculty of Engineering, Eskişehir Technical University, 26555, Eskişehir, Turkey.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2022 Nov; Vol. 29 (52), pp. 78711-78725. Date of Electronic Publication: 2022 Jun 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Volatile Organic Compounds*/analysis , Air Pollutants*/analysis , Olea* , Stroke*, Humans ; Gasoline ; Pentanes ; Farmers ; Toluene ; Alkenes ; Environmental Monitoring
مستخلص: Personal exposure to volatile organic compounds (VOCs) is mainly associated with indoor exposures; however, elevated short-term exposures may also occur during ambient activities. Handheld two-stroke gasoline-powered engines have widespread use in agriculture, but so far, no studies have been conducted on the potential health risks due to the inhalation of emitted VOCs. A one-week passive sampling has been conducted on olive farm workers during the harvesting season to monitor personal exposure levels to VOCs. The first group of workers was selected to represent the contribution of gasoline-powered shaker to daily personal VOC exposures, and one another group of workers was selected as the control, whose have not been using the device. Higher concentrations of 1-pentene, n-hexane, isopentane, n-pentene, and toluene were observed in personal samples collected from machine operators. Personal exposure concentrations of a total of 45 monitored VOCs varied between 29.2 ± 10.7 and 3733.4 ± 3300.1 µg m -3 among 20 volunteer workers. Estimated carcinogenic risks were between the acceptable levels of 10 -4 and 10 -6 for all workers. All individual chronic HQs and HIs (as the sum of individual HQs) were below the benchmark value of 1 for regular workers in 3 different sampling sites, whereas HI values in both acute (short term) and chronic exposure scenarios were exceeded 1 for shaker machine operators. This represented potential non-carcinogenic health hazards for exposed shaker operators, along with elevated VOCs.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Aiello G, La Scalia G, Vallone M, Catania P, Venticinque M (2012) Real time assessment of hand-arm vibration system based on capacitive MEMS accelerometers. Comput Electron Agr 85:45–52. https://doi.org/10.1016/j.compag.2012.02.022. (PMID: 10.1016/j.compag.2012.02.022)
Aiello G, Vallone M, Catania P (2019) Optimising the efficiency of olive harvesting considering operator safety. Biosyst Eng 185:15–24. https://doi.org/10.1016/j.biosystemseng.2019.02.016Get. (PMID: 10.1016/j.biosystemseng.2019.02.016Get)
Alander T, Antikainen E, Raunemaa T, Elonen E, Rautiola A, Torkkell K (2005) Particle emissions from a small two-stroke engine: effects of fuel, lubricating oil, and exhaust after treatment on particle characteristics. Aerosol Sci Tech 39:151–161. https://doi.org/10.1080/027868290910224. (PMID: 10.1080/027868290910224)
Arı A (2020) A comprehensive study on gas and particle emissions from laser printers: chemical composition and health risk assessment. Atmos Pollut Res 11:269–282. https://doi.org/10.1016/j.apr.2019.10.013. (PMID: 10.1016/j.apr.2019.10.013)
Arı A, Ertürk Arı P, Yenisoy Karakaş S, Gaga EO (2020) Source characterization and risk assessment of occupational exposure to volatile organic compounds (VOCs) in a barbecue restaurant. Build Environ 174:106791. https://doi.org/10.1016/j.buildenv.2020.106791. (PMID: 10.1016/j.buildenv.2020.106791)
Banks JL, McConnell R (2015) National emissions from lawn and garden equipment. Presented at the International Emissions Inventory Conference, San Diego, April 16. Retrieved 22th of April, 2021. https://www.epa.gov/sites/production/files/2015-09/documents/banks.pdf.
Bari A, Kindzierski WB (2018) Ambient volatile organic compounds (VOCs) in Calgary, Alberta: sources and screening health risk assessment. Sci Total Environ 631–632:627–640. https://doi.org/10.1016/j.scitotenv.2018.03.023. (PMID: 10.1016/j.scitotenv.2018.03.023)
Bozkurt Z, Özden Üzmez Ö, Döğeroğlu T, Artun G, Gaga EO (2018) Atmospheric concentrations of SO 2 , NO 2 , ozone and VOCs in Düzce, Turkey using passive air samplers: sources, spatial and seasonal variations and health risk estimation. Atmos Pollut Res 9:1146–1156. https://doi.org/10.1016/j.apr.2018.05.001. (PMID: 10.1016/j.apr.2018.05.001)
Bunch AG, Perry CS, Abraham L, Wikoff DS, Tachovsky JA, Hixon JG, Urban JD, Harris MA, Haws LC (2014) Evaluation of impact of shale gas operations in the Barnett Shale region on volatile organic compounds in air and potential human health risks. Sci Total Environ 468–469:832–842. https://doi.org/10.1016/j.scitotenv.2013.08.080. (PMID: 10.1016/j.scitotenv.2013.08.080)
California Environmental Protection Agency (Cal EPA) (2020) Selection and adjustment of provisional inhalation health guidance values for screening-level risk assessment. SRP Discussion Draft. Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, October.
Castro-García S, Blanco Roldán GL, Jiménez-Jiménez F, Gil-Ribes JA, Ferguson L, Glozer K, Krueger WH, Fichtner EJ, Burns JK, Miles JA, Rosa UA (2012) Preparing Spain and California table olive industries for mechanical harvesting. Acta Hortic 965:29–40. https://doi.org/10.17660/ActaHortic.2012.965.1. (PMID: 10.17660/ActaHortic.2012.965.1)
Chang TY, Huang KH, Liu CS, Shie RH, Chao KP, Hsu WH, Bao BY (2010) Exposure to volatile organic compounds and kidney dysfunction in thin film transistor liquid crystal display (TFT-LCD) workers. J Hazard Mater 178:934–940. https://doi.org/10.1016/j.jhazmat.2010.02.027. (PMID: 10.1016/j.jhazmat.2010.02.027)
Colman Lerner JE, Sanchez EY, Sambeth JE, Porta AA (2012) Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires. Argentina Atmos Environ 55:440–447. https://doi.org/10.1016/j.atmosenv.2012.03.041. (PMID: 10.1016/j.atmosenv.2012.03.041)
Cui P, Schito G, Cui Q (2020) VOC emissions from asphalt pavement and health risks to construction workers. J Clean Prod 244:118757. https://doi.org/10.1016/j.jclepro.2019.118757. (PMID: 10.1016/j.jclepro.2019.118757)
D’Souza JC, Jia C, Mukherjee B, Batterman S (2009) Ethnicity, housing and personal factors as determinants of VOC exposures. Atmos Environ 43:2884–2892. https://doi.org/10.1016/j.atmosenv.2009.03.017. (PMID: 10.1016/j.atmosenv.2009.03.017)
de Blas M, Ibanez P, Garcia JA, Gomez MC, Navazo M, Alonso L, Durana N, Iza J, Gangoiti G, de Camara ES (2019) Summertime high resolution variability of atmospheric formaldehyde and non-methane volatile organic compounds in a rural background area. Sci Total Environ 647:862–877. https://doi.org/10.1016/j.scitotenv.2018.07.411. (PMID: 10.1016/j.scitotenv.2018.07.411)
Dhital NB, Yang HH, Wang LC, Hsu YT, Zhang HY, Young LH, Lu JH (2019) VOCs emission characteristics in motorcycle exhaust with different emission control devices. Atmos Pollut Res 10:1498–1506. https://doi.org/10.1016/j.apr.2019.04.007. (PMID: 10.1016/j.apr.2019.04.007)
Du Z, Mo J, Zhang Y (2014) Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China. Environ Int 73:33–45. https://doi.org/10.1016/j.envint.2014.06.014. (PMID: 10.1016/j.envint.2014.06.014)
Duran E, Ünal H (2016) Bursa İli Orhangazi ve Gemlik İlçelerinde Zeytin Yetiştiriciliğindeki Mekanizasyon Durumu (Mechanization level of olive growing in Orhangazi and Gemlik districts of Bursa Province). J Agric Facult Uludag Univ 30:127–138. Retrieved from:  https://dergipark.org.tr/tr/download/article-file/221858 . Accessed 13 June 2022.
Engelsman M, Toms LML, Banks APW, Wang X, Mueller JF (2020) Biomonitoring in firefighters for volatile organic compounds, semivolatile organic compounds, persistent organic pollutants, and metals: a systematic review. Environ Res 188:109562. https://doi.org/10.1016/j.envres.2020.109562. (PMID: 10.1016/j.envres.2020.109562)
Fang L, Norris C, Johnson K, Cui X, Sun J, Teng Y, Tian E, Xu W, Li Z, Mo J, Schauer JJ, Black M, Bergin M, Zhang J, Zhang Y (2019) Toxic volatile organic compounds in 20 homes in Shanghai: concentrations, inhalation health risks, and the impacts of household air cleaning. Build Environ 157:309–318. https://doi.org/10.1016/j.buildenv.2019.04.047. (PMID: 10.1016/j.buildenv.2019.04.047)
Fent KW, Toennis C, Sammons D, Robertson S, Bertke S, Calafat AM, Pleil JD, Wallace MAG, Kerber S, Smith DL, Horn GP (2019) Firefighters’ and instructors’ absorption of PAHs and benzene during training exercises. Int J Hyg Envir Heal 222:991–1000. https://doi.org/10.1016/j.ijheh.2019.06.006. (PMID: 10.1016/j.ijheh.2019.06.006)
Filella I, Penuelas J (2006) Daily, weekly, and seasonal time courses of VOC concentrations in a semi-urban area near Barcelona. Atmos Environ 40:7752–7769. https://doi.org/10.1016/j.atmosenv.2006.08.002. (PMID: 10.1016/j.atmosenv.2006.08.002)
Food and Agriculture Organization of the United Nations (FAO) (2020) Olive production statistics. Available at: https://www.fao.org/faostat/en/#search/turkey%20olive%20production . Accessed 13 June 2022 .
Gabele PA (2000) Characterization of emissions from handheld two-stroke engines. 93rd Annual AWMA Conference, Salt Lake City, UT, June 18–22.
Gao Z, Hu G, Wang H, Zhu B (2019) Characterization and assessment of volatile organic compounds (VOCs) emissions from the typical food manufacturers in Jiangsu province, China. Atmos Pollut Res 10:571–579. https://doi.org/10.1016/j.apr.2018.10.010. (PMID: 10.1016/j.apr.2018.10.010)
Gong Y, Wei Y, Cheng J, Jiang T, Chen L, Xu B (2017) Health risk assessment and personal exposure to volatile organic compounds (VOCs) in metro carriages – a case study in Shanghai. China Sci Total Environ 574:1432–1438. https://doi.org/10.1016/j.scitotenv.2016.08.072. (PMID: 10.1016/j.scitotenv.2016.08.072)
Gordon TD, Tkacik DS, Presto AA, Zhang M, Jathar SH, Nguyen NT, Massetti J, Truong T, Cicero-Fernandez P, Maddox C, Rieger P, Chattopadhyay S, Maldonado H, Maricq MM, Robinson AL (2013) Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines. Environ Sci Technol. 47:14137–14146. https://doi.org/10.1021/es403556e. (PMID: 10.1021/es403556e)
Guo H, Lee SC, Chan LY, Li WM (2004) Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res 94:57–66. https://doi.org/10.1016/S0013-9351(03)00035-5. (PMID: 10.1016/S0013-9351(03)00035-5)
Huang Y, Su T, Wang L, Wang N, Xue Y, Dai W, Lee SC, Cao J, Ho SSH (2019) Evaluation and characterization of volatile air toxics indoors in a heavy polluted city of Northwestern China in Wintertime. Sci Total Environ 662:470–480. https://doi.org/10.1016/j.scitotenv.2019.01.250. (PMID: 10.1016/j.scitotenv.2019.01.250)
ISO 16017–2: (2003) Indoor, ambient and workplace air — sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography — Part 2: Diffusive sampling.
Jo WK, Song KB (2001) Exposure to volatile organic compounds for individuals with occupations associated with potential exposure to motor vehicle exhaust and/or gasoline vapor emissions. Sci Total Environ 269:25–37. https://doi.org/10.1016/S0048-9697(00)00774-9. (PMID: 10.1016/S0048-9697(00)00774-9)
Jüttner F, Backhaus D, Matthias U, Essers U, Greiner R, Mahr B (1995) Emissions of two- and four-stroke outboard engines-I. Quantification of gases and VOCs. Wat Res 29:1976–1982. https://doi.org/10.1016/0043-1354(94)00330-A. (PMID: 10.1016/0043-1354(94)00330-A)
Kanjanasiranont N, Prueksasit T, Morknoy D (2017) Inhalation exposure and health risk levels to BTEX and carbonyl compounds of traffic policeman working in the inner city of Bangkok. Thailand Atmos Environ 152:111–120. https://doi.org/10.1016/j.atmosenv.2016.11.062. (PMID: 10.1016/j.atmosenv.2016.11.062)
Küçükaçıl Artun G, Polat N, Yay OD, Özden Üzmez Ö, Arı A, Tuna Tuygun G, Elbir T, Altuğ H, Dumanoğlu Y, Döğeroğlu T, Dawood A, Odabasi M, Gaga EO (2017) An integrative approach for determination of air pollution and its health effects in a coal fired power plant area by passive sampling. Atmos Environ 150:331–345. https://doi.org/10.1016/j.atmosenv.2016.11.025. (PMID: 10.1016/j.atmosenv.2016.11.025)
Kumar A, Singh D, Kumar K, Singh BB, Jain VK (2018) Distribution of VOCs in urban and rural atmospheres of subtropical India: temporal variation, source attribution, ratios, OFP and risk assessment. Sci Total Environ 613–614:492–501. https://doi.org/10.1016/j.scitotenv.2017.09.096. (PMID: 10.1016/j.scitotenv.2017.09.096)
Lamplugh A, Harries M, Xiang F, Trinh J, Hecobian A, Montoya LD (2019) Occupational exposure to volatile organic compounds and health risks in Colorado nail salons. Environ Pollut 249:518–526. https://doi.org/10.1016/j.envpol.2019.03.086. (PMID: 10.1016/j.envpol.2019.03.086)
Lee CW, Dai YT, Chien CH, Hsu DJ (2006) Characteristics and health impacts of volatile organic compounds in photocopy centers. Environ Res 100:139–149. https://doi.org/10.1016/j.envres.2005.05.003. (PMID: 10.1016/j.envres.2005.05.003)
Li S, Chen S, Zhu L, Chen X, Yao C, Shen X (2009) Concentrations and risk assessment of selected monoaromatic hydrocarbons in buses and bus stations of Hangzhou, China. Sci Total Environ 407:2004–2011. https://doi.org/10.1016/j.scitotenv.2008.11.020. (PMID: 10.1016/j.scitotenv.2008.11.020)
Li Q, Su G, Li C, Wang M, Tan L, Gao L, Wu M, Wang Q (2019) Emission profiles, ozone formation potential and health-risk assessment of volatile organic compounds in rubber footwear industries in China. J Hazard Mater 375:52–60. https://doi.org/10.1016/j.jhazmat.2019.04.064. (PMID: 10.1016/j.jhazmat.2019.04.064)
Lijewski P, Fuc P, Dobrzynski M, Markiewicz F (2017) Exhaust emissions from small engines in handheld devices. MATEC Web Conf. 118:00016. https://doi.org/10.1051/matecconf/201711800016. (PMID: 10.1051/matecconf/201711800016)
Luo H, Li G, Chen J, Lin Q, Ma S, Wang Y, An T (2020) Spatial and temporal distribution characteristics and ozone formation potentials of volatile organic compounds from three typical functional areas in China. Environ Res 183:109141. https://doi.org/10.1016/j.envres.2020.109141. (PMID: 10.1016/j.envres.2020.109141)
Martini G, Astorga C, Adam T, Bonnel P, Farfaletti A, Junninen H, Manfredi U, Montero L, Müller A, Krasenbrink A, Larsen BR, Rey M, De Santi G (2009) Physical & chemical characterization of emissions from 2-stroke motorcycles. Comparison with 4-Stroke Engines. EUR 23999 EN, European Communities, Brussels. Available at: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC53779/eur%20report%2023999%20en&#95;mopeds&#95;2009%20%282%29.pdf.
Masih A, Lall AS, Taneja A, Singhvi R (2018) Exposure levels and health risk assessment of ambient BTX at urban and rural environments of a Terai region of northern India. Environ Pollut. 242(Part B):1678–1683. https://doi.org/10.1016/j.envpol.2018.07.107.
McKenzie LM, Blair B, Hughes J, Allshouse WB, Blake NJ, Helmig D, Milmoe P, Halliday H, Blake DR, Adgate JL (2018) Ambient nonmethane hydrocarbon levels along Colorado’s northern front range: Acute and chronic health risks. Environ Sci Technol 52:4514–4525. https://doi.org/10.1021/acs.est.7b05983. (PMID: 10.1021/acs.est.7b05983)
McMullin TS, Bamber AM, Bon D, Vigil DI, Van Dyke M (2018) Exposures and health risks from volatile organic compounds in communities located near oil and gas exploration and production activities in Colorado (U.S.A.). Int J Environ Res Publ Health. 15(7):1500. https://doi.org/10.3390/ijerph15071500. (PMID: 10.3390/ijerph15071500)
Nataletti P, Bogi A, Borra M, Gioia D, Falsaperla R, Marchetti E, Militello A, Nicolini O, Rossi P, Sacco F, Stacchini N, Pinto I (2014) Occupational exposure to physical agents: the new Italian database for risk assessment and control. Int J Occup Saf Ergo 20:407–420. https://doi.org/10.1080/10803548.2014.11077065. (PMID: 10.1080/10803548.2014.11077065)
Omidi F, Dehghani F, Fallahzadeh RA, Miri M, Taghavi M, Eynipour A (2019) Probabilistic risk assessment of occupational exposure to volatile organic compounds in the rendering plant of a poultry slaughterhouse. Ecotoxicol Environ Saf 176:132–136. https://doi.org/10.1016/j.ecoenv.2019.03.079. (PMID: 10.1016/j.ecoenv.2019.03.079)
Öztürk M, Topaloğlu B, Hilton A, Jongerden J (2018) Rural-urban mobilities in Turkey: socio-spatial perspectives on migration and return movements. J Balkan Near East Stud 20:513–530. https://doi.org/10.1080/19448953.2018.1406696. (PMID: 10.1080/19448953.2018.1406696)
Parra MA, Gonzalez L, Elustondo D, Garrigo J, Bermejo R, Santamaria JM (2006) Spatial and temporal trends of volatile organic compounds (VOC) in a rural area of northern Spain. Sci Total Environ 370:157–167. https://doi.org/10.1016/j.scitotenv.2006.06.022. (PMID: 10.1016/j.scitotenv.2006.06.022)
Pattinson W, Targino AC, Gibson MD, Krecl P, Cipoli Y, Sa V (2018) Quantifying variation in occupational air pollution exposure within a small metropolitan region of Brazil. Atmos Environ 182:138–154. https://doi.org/10.1016/j.atmosenv.2018.03.011. (PMID: 10.1016/j.atmosenv.2018.03.011)
Phuc NH, Oanh NTK (2018) Determining factors for levels of volatile organic compounds measured in different microenvironment of a heavy traffic urban area. Sci Total Environ 627:290–303. https://doi.org/10.1016/j.scitotenv.2018.01.216. (PMID: 10.1016/j.scitotenv.2018.01.216)
Platt SM, El Haddad I, Pieber SM, Huang R-J, Zardini AA, Clairotte M, Suarez-Bertoa R, Barmet P, Pfaddenberger L, Wolf R, Slowik JG, Fuller SJ, Kalberer M, Chirico R, Dommen J, Astorga C, Zimmermann R, Marchand N, Hellebust S, Temime-Roussel B, Baltensperger U, Prevot ASH (2014) Two-stroke scooters are a dominant source of air pollution in many cities. Nat Commun 13:3749. https://doi.org/10.1038/ncomms4749. (PMID: 10.1038/ncomms4749)
Potera C (2004) Air Pollution: Asia’s two-stroke engine dilemma. Environ Health Persp 112:A613. https://doi.org/10.1289/ehp.112-a613a. (PMID: 10.1289/ehp.112-a613a)
Ramirez N, Cuadras A, Rovira E, Borrull F, Marce RM (2012) Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site. Environ Int 39:200–209. https://doi.org/10.1016/j.envint.2011.11.002. (PMID: 10.1016/j.envint.2011.11.002)
Reichle LJ, Cook R, Yanca CA, Sonntag DB (2015) Development of organic gas exhaust speciation profiles for nonroad spark-ignition and compression-ignition engines and equipment. J Air Waste Manage 65:1185–1193. https://doi.org/10.1080/10962247.2015.1020118. (PMID: 10.1080/10962247.2015.1020118)
Samadi MT, Shakerkhatibi M, Poorolajal J, Rahmani A, Rafieemehr H, Hesam M (2019) Association of long term exposure to outdoor volatile organic compounds (BTXS) with pro-inflammatory biomarkers and hematologic parameters in urban adults: a cross-sectional study in Tabriz, Iran. Ecotoxicol Environ Saf 180:152–159. https://doi.org/10.1016/j.ecoenv.2019.05.008. (PMID: 10.1016/j.ecoenv.2019.05.008)
Sofuoglu SC, Aslan G, Inal F, Sofuoglu A (2011) As assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools. Int J Hyg Environ Health 214:36–46. https://doi.org/10.1016/j.ijheh.2010.08.008. (PMID: 10.1016/j.ijheh.2010.08.008)
The National Institute for Occupational Safety and Health (NIOSH), 2021. NIOSH pocket guide to chemical hazards, benzene. Available from: https://www.cdc.gov/niosh/npg/npgd0049.html (Last accessed 14th of June, 2021).
The Risk Assessment Information System (RAIS) (2021) Toxicity values. Available at: https://rais.ornl.gov/tutorials/toxvals.html (Last accessed 18.04.2021).
The United States Department of Labor, Occupational Safetty and Health Administration (OSHA) (2021) Permissible exposure limits – annotated tables. Available from: https://www.osha.gov/annotated-pels (Last accessed 14th of June, 2021).
The United States Environmental Protection Agency (USEPA) (2000) Office of transportation and air quality. regulatory announcement. Final phase 2 standards for small, spark-ignitioned handheld engines. EPA-420-F-00–007. Available at: http://www.epa.gov/otaq/equip-ld.htm.
The United States Environmental Protection Agency (USEPA) (2009) Risk assessment guidance for superfund volume I: human health evaluation manual (part F, supplemental guidance for ınhalation risk assessment). Office of Superfund Remediation and Technology Innovation Environmental Protection Agency, Washington, D.C.
The United States Environmental Protection Agency (USEPA) (2011) Exposure factors handbook. 2011 edition. US Environmental Protection Agency, Washington, DC (EPA/600/R09/052F.
Tovalin-Ahumada H, Whitehead L (2007) Personal exposures to volatile organic compounds among outdoor and indoor workers in two Mexican cities. Sci Total Environ 376:60–71. https://doi.org/10.1016/j.scitotenv.2007.01.063. (PMID: 10.1016/j.scitotenv.2007.01.063)
Tsai JH, Chen YR, Chen SJ, Lin SL, Huang KL, Lin CC, Chiu JY (2020) Characteristics of emissions from a portable two-stroke gasoline engine. Aerosol Air Qual Res 20:630–642. https://doi.org/10.4209/aaqr.2019.12.0650. (PMID: 10.4209/aaqr.2019.12.0650)
Turkish Ministry of Environment and Urbanization (TMOE) (2008) Air quality assessment and management regulation. Available from: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=12188&MevzuatTur=7&MevzuatTertip=5 (Last accessed 14th of June, 2021).
US National Research Council (NRC). Committee on Risk Assessment of Hazardous Air Pollutants. Science and Judgment in Risk Assessment. Washington (DC): National Academies Press (US); 1994. Appendix F, Uncertainty Analysis of Health Risk Estimates. Available from:  https://www.ncbi.nlm.nih.gov/books/NBK208266/ . Accessed 13 June 2022 .
Villanueva F, Tapia A, Amo-Salas M, Notario A, Cabanas B, Martinez E (2015) Levels and sources of volatile organic compounds including carbonyls in indoor air of homes of Puertollano, the most industrialized city in central Iberian Peninsula. Estimation of health risk. Int J Hyg Environ Health 218:522–534. https://doi.org/10.1016/j.ijheh.2015.05.004. (PMID: 10.1016/j.ijheh.2015.05.004)
Volckens J, Braddock J, Snow RF, Crews W (2007) Emissions profile from new and in-use handheld, 2-stroke engines. Atmos Environ 41:640–649. https://doi.org/10.1016/j.atmosenv.2006.08.033. (PMID: 10.1016/j.atmosenv.2006.08.033)
Volckens J, Olson DA, Hays MD (2008) Carbonaceous species emitted from handheld two-stroke engines. Atmos Environ 42:1239–1248. https://doi.org/10.1016/j.atmosenv.2007.10.032. (PMID: 10.1016/j.atmosenv.2007.10.032)
Wang SW, Majeed MA, Chu PL, Lin HC (2009) Characterizing relationships between personal exposures to VOCs and socioeconomic, demographic, behavioral variables. Atmos Environ 43:2296–2302. https://doi.org/10.1016/j.atmosenv.2009.01.032. (PMID: 10.1016/j.atmosenv.2009.01.032)
World Health Organization (WHO) (1999) Air quality guidelines. http://www.who.int/environmental&#95;information/Air/Guidelines/Chapter3.htm#3.2 (online) 22 November 2003.
Wu XM, Fan ZT, Zhu X, Jung KH, Ohman-Strickland P, Weisel CP, Lioy PJ (2012) Exposures to volatile organic compounds (VOCs) and associated health risks of socio-economically disadvantaged population in a “hot spot” in Camden, New Jersey. Atmos Environ 57:72–79. https://doi.org/10.1016/j.atmosenv.2012.04.029. (PMID: 10.1016/j.atmosenv.2012.04.029)
Xiong Y, Bari MdA, Xing Z, Du K (2020) Ambient volatile organic compounds (VOCs) in two coastal cities in western Canada: spatiotemporal variation, source apportionment, and health risk assessment. Sci Total Environ 706:135970. https://doi.org/10.1016/j.scitotenv.2019.135970. (PMID: 10.1016/j.scitotenv.2019.135970)
Zhang Z, Yan X, Gao F, Thai P, Wang H, Chen D, Zhou L, Gong D, Li Q, Morawska L, Wang B (2018) Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China. Environ Pollut 238:452–461. https://doi.org/10.1016/j.envpol.2018.03.054. (PMID: 10.1016/j.envpol.2018.03.054)
Zhang DC, Liu JJ, Jia LZ, Wang P, Han X (2019) Speciation of VOCs in the cooking fumes from five edible oils and their corresponding health risk assessments. Atmos Environ 211:6–17. https://doi.org/10.1016/j.atmosenv.2019.04.043. (PMID: 10.1016/j.atmosenv.2019.04.043)
Zheng H, Kong S, Yan Y, Chen N, Yao L, Liu X, Wu F, Cheng Y, Niu Z, Zheng S, Zeng X, Yan Q, Wu J, Mingming Z, Liu D, Zhao D, Qi S (2020) Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River. Sci Total Environ 703:135505. https://doi.org/10.1016/j.scitotenv.2019.135505. (PMID: 10.1016/j.scitotenv.2019.135505)
فهرسة مساهمة: Keywords: Agricultural VOC exposure; Health risk assessment; Olive farm workers; Personal VOC exposure; Two-stroke engines
المشرفين على المادة: 0 (Volatile Organic Compounds)
0 (Air Pollutants)
0 (Gasoline)
0 (Pentanes)
3FPU23BG52 (Toluene)
0 (Alkenes)
تواريخ الأحداث: Date Created: 20220614 Date Completed: 20221026 Latest Revision: 20221026
رمز التحديث: 20240628
DOI: 10.1007/s11356-022-21378-5
PMID: 35699878
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-022-21378-5