دورية أكاديمية

Non-invasive vagus nerve stimulation in epilepsy patients enhances cooperative behavior in the prisoner's dilemma task.

التفاصيل البيبلوغرافية
العنوان: Non-invasive vagus nerve stimulation in epilepsy patients enhances cooperative behavior in the prisoner's dilemma task.
المؤلفون: Oehrn CR; Department of Neurology, Philipps-University Marburg, Marburg, Germany. carina.oehrn@staff.uni-marburg.de.; Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany. carina.oehrn@staff.uni-marburg.de., Molitor L; Department of Neurology, Philipps-University Marburg, Marburg, Germany., Krause K; Department of Neurology, Philipps-University Marburg, Marburg, Germany.; Department of Neurology, Epilepsy Center Hessen, Philipps-University, Marburg, Germany., Niehaus H; Department of Psychology, Theoretical Neuroscience Section, Philipps-University Marburg, Marburg, Germany., Schmidt L; Department of Neurology, Philipps-University Marburg, Marburg, Germany., Hakel L; Department of Neurology, Philipps-University Marburg, Marburg, Germany., Timmermann L; Department of Neurology, Philipps-University Marburg, Marburg, Germany.; Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany., Menzler K; Department of Neurology, Philipps-University Marburg, Marburg, Germany.; Department of Neurology, Epilepsy Center Hessen, Philipps-University, Marburg, Germany., Knake S; Department of Neurology, Philipps-University Marburg, Marburg, Germany.; Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany.; Department of Neurology, Epilepsy Center Hessen, Philipps-University, Marburg, Germany., Weber I; Department of Neurology, Philipps-University Marburg, Marburg, Germany.
المصدر: Scientific reports [Sci Rep] 2022 Jun 17; Vol. 12 (1), pp. 10255. Date of Electronic Publication: 2022 Jun 17.
نوع المنشور: Journal Article; Randomized Controlled Trial; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Epilepsy*/therapy , Transcutaneous Electric Nerve Stimulation* , Vagus Nerve Stimulation*, Cooperative Behavior ; Humans ; Prisoner Dilemma ; Vagus Nerve/physiology
مستخلص: The vagus nerve constitutes a key link between the autonomic and the central nervous system. Previous studies provide evidence for the impact of vagal activity on distinct cognitive processes including functions related to social cognition. Recent studies in animals and humans show that vagus nerve stimulation is associated with enhanced reward-seeking and dopamine-release in the brain. Social interaction recruits similar brain circuits to reward processing. We hypothesize that vagus nerve stimulation (VNS) boosts rewarding aspects of social behavior and compare the impact of transcutaneous VNS (tVNS) and sham stimulation on social interaction in 19 epilepsy patients in a double-blind pseudo-randomized study with cross-over design. Using a well-established paradigm, i.e., the prisoner's dilemma, we investigate effects of stimulation on cooperative behavior, as well as interactions of stimulation effects with patient characteristics. A repeated-measures ANOVA and a linear mixed-effects model provide converging evidence that tVNS boosts cooperation. Post-hoc correlations reveal that this effect varies as a function of neuroticism, a personality trait linked to the dopaminergic system. Behavioral modeling indicates that tVNS induces a behavioral starting bias towards cooperation, which is independent of the decision process. This study provides evidence for the causal influence of vagus nerve activity on social interaction.
(© 2022. The Author(s).)
References: Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 108, 16050–16055 (2011). (PMID: 21876150317907310.1073/pnas.1102999108)
Petrocchi, N. & Cheli, S. The social brain and heart rate variability: Implications for psychotherapy. Psychol. Psychother. 92, 208–223 (2019). (PMID: 3089189410.1111/papt.12224)
Farmer, A. D. et al. International consensus based review and recommendations for minimum reporting standards in research on transcutaneous vagus nerve stimulation (version 2020). Front. Hum. Neurosci. 14, 568051 (2020). (PMID: 3385442110.3389/fnhum.2020.568051)
Vonck, K. et al. Vagus nerve stimulation…25 years later! What do we know about the effects on cognition?. Neurosci. Biobehav. Rev. 45, 63–71 (2014). (PMID: 2485800810.1016/j.neubiorev.2014.05.005)
Yap, J. Y. Y. et al. Critical review of transcutaneous vagus nerve stimulation: Challenges for translation to clinical practice. Front. Neurosci. 14, 284 (2020). (PMID: 32410932719946410.3389/fnins.2020.00284)
Han, W. et al. A neural circuit for gut-induced reward. Cell 175, 665-678.e23 (2018). (PMID: 30245012619547410.1016/j.cell.2018.08.049)
Manta, S., El Mansari, M., Debonnel, G. & Blier, P. Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int. J. Neuropsychopharmacol. 16, 459–470 (2013). (PMID: 2271706210.1017/S1461145712000387)
Neuser, M. P. et al. Vagus nerve stimulation boosts the drive to work for rewards. Nat. Commun. 11, 3555 (2020). (PMID: 32678082736692710.1038/s41467-020-17344-9)
Weber, I. et al. Trust your gut: Vagal nerve stimulation in humans improves reinforcement learning. Brain Commun. https://doi.org/10.1093/braincomms/fcab039 (2021). (PMID: 10.1093/braincomms/fcab039352433438887904)
Jacobs, H. I. L., Riphagen, J. M., Razat, C. M., Wiese, S. & Sack, A. T. Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol. Aging 36, 1860–1867 (2015). (PMID: 2580521210.1016/j.neurobiolaging.2015.02.023)
Fernandes, A. B. et al. Postingestive modulation of food seeking depends on vagus-mediated dopamine neuron activity. Neuron 106, 778-788.e6 (2020). (PMID: 32259476771049610.1016/j.neuron.2020.03.009)
Frangos, E., Ellrich, J. & Komisaruk, B. R. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimulat. Basic Transl. Clin. Res. Neuromodulat. 8, 624–636 (2015). (PMID: 10.1016/j.brs.2014.11.018)
Wang, Z. et al. Frequency-dependent functional connectivity of the nucleus accumbens during continuous transcutaneous vagus nerve stimulation in major depressive disorder. J. Psychiatr. Res. 102, 123–131 (2018). (PMID: 2967426810.1016/j.jpsychires.2017.12.018)
Mertens, A. et al. Transcutaneous vagus nerve stimulation does not affect verbal memory performance in healthy volunteers. Front. Psychol. 11, 551 (2020). (PMID: 32351421717466510.3389/fpsyg.2020.00551)
Mertens, A. et al. The potential of invasive and non-invasive vagus nerve stimulation to improve verbal memory performance in epilepsy patients. Sci. Rep. 12, 1984 (2022). (PMID: 35132096882166710.1038/s41598-022-05842-3)
Jongkees, B. J., Immink, M. A., Finisguerra, A. & Colzato, L. S. Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during sequential action. Front. Psychol. 9, 1159 (2018). (PMID: 30034357604368110.3389/fpsyg.2018.01159)
Fischer, R., Ventura-Bort, C., Hamm, A. & Weymar, M. Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cogn. Affect Behav. Neurosci. 18, 680–693 (2018). (PMID: 2969321410.3758/s13415-018-0596-2)
Borges, U., Knops, L., Laborde, S., Klatt, S. & Raab, M. Transcutaneous vagus nerve stimulation may enhance only specific aspects of the core executive functions. A randomized crossover trial. Front. Neurosci. 14, 523 (2020). (PMID: 32523510726236910.3389/fnins.2020.00523)
Beste, C. et al. Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control—A study using transcutaneous vagus nerve stimulation. Brain Stimulat. Basic Transl. Clin. Res. Neuromodulat. 9, 811–818 (2016). (PMID: 10.1016/j.brs.2016.07.004)
Porges, S. W. The polyvagal perspective. Biol. Psychol. 74, 116–143 (2007). (PMID: 1704941810.1016/j.biopsycho.2006.06.009)
Kraus, T. et al. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal—A pilot study. Brain Stimulat. Basic Transl. Clin. Res. Neuromodulat. 6, 798–804 (2013). (PMID: 10.1016/j.brs.2013.01.011)
Izuma, K., Saito, D. N. & Sadato, N. Processing of social and monetary rewards in the human striatum. Neuron 58, 284–294 (2008). (PMID: 1843941210.1016/j.neuron.2008.03.020)
King-Casas, B. et al. Getting to know you: Reputation and trust in a two-person economic exchange. Science (New York, NY) 308, 78–83 (2005). (PMID: 10.1126/science.1108062)
Rilling, J. K. et al. A neural basis for social cooperation. Neuron 35, 395–405 (2002). (PMID: 1216075610.1016/S0896-6273(02)00755-9)
Shahrestani, S., Stewart, E. M., Quintana, D. S., Hickie, I. B. & Guastella, A. J. Heart rate variability during adolescent and adult social interactions: A meta-analysis. Biol. Psychol. 105, 43–50 (2015). (PMID: 2555977310.1016/j.biopsycho.2014.12.012)
Beffara, B., Bret, A. G., Vermeulen, N. & Mermillod, M. Resting high frequency heart rate variability selectively predicts cooperative behavior. Physiol. Behav. 164, 417–428 (2016). (PMID: 2734380410.1016/j.physbeh.2016.06.011)
Di Bello, M. et al. The compassionate vagus: A meta-analysis on the connection between compassion and heart rate variability. Neurosci. Biobehav. Rev. 116, 21–30 (2020). (PMID: 3255400110.1016/j.neubiorev.2020.06.016)
Sellaro, R., Steenbergen, L., Verkuil, B., van Ijzendoorn, M. H. & Colzato, L. S. Transcutaneous Vagus Nerve Stimulation (tVNS) does not increase prosocial behavior in Cyberball. Front. Psychol. 6, 499 (2015). (PMID: 25972825441197010.3389/fpsyg.2015.00499)
Maraver, M. J. et al. Transcutaneous vagus nerve stimulation modulates attentional resource deployment towards social cues. Neuropsychologia 143, 107465 (2020). (PMID: 3230261810.1016/j.neuropsychologia.2020.107465)
Flood, M. M. Some experimental games. Manage. Sci. 5, 5–26 (1958). (PMID: 10.1287/mnsc.5.1.5)
Hirsh, J. B. & Peterson, J. B. Extraversion, neuroticism, and the prisoner’s dilemma. Personality Individ. Differ. 46, 254–256 (2009). (PMID: 10.1016/j.paid.2008.10.006)
Cohen, M. X., Young, J., Baek, J.-M., Kessler, C. & Ranganath, C. Individual differences in extraversion and dopamine genetics predict neural reward responses. Brain Res. Cogn. Brain Res. 25, 851–861 (2005). (PMID: 1628977310.1016/j.cogbrainres.2005.09.018)
Fischer, R., Lee, A. & Verzijden, M. N. Dopamine genes are linked to Extraversion and Neuroticism personality traits, but only in demanding climates. Sci. Rep. 8, 1733 (2018). (PMID: 29379052578900810.1038/s41598-017-18784-y)
Pedersen, M. L., Frank, M. J. & Biele, G. The drift diffusion model as the choice rule in reinforcement learning. Psychon. Bull. Rev. 24, 1234–1251 (2017). (PMID: 27966103548729510.3758/s13423-016-1199-y)
Voss, A., Rothermund, K. & Voss, J. Interpreting the parameters of the diffusion model: An empirical validation. Mem. Cognit. 32, 1206–1220 (2004). (PMID: 1581350110.3758/BF03196893)
Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W. & Forstmann, B. U. Bias in the brain: A diffusion model analysis of prior probability and potential payoff. J. Neurosci. 32, 2335–2343 (2012). (PMID: 22396408662182310.1523/JNEUROSCI.4156-11.2012)
Gallotti, R. & Grujić, J. A quantitative description of the transition between intuitive altruism and rational deliberation in iterated Prisoner’s Dilemma experiments. Sci. Rep. 9, 1–11 (2019). (PMID: 10.1038/s41598-019-52359-3)
Krajbich, I., Hare, T., Bartling, B., Morishima, Y. & Fehr, E. A common mechanism underlying food choice and social decisions. PLoS Comput. Biol. 11, e1004371 (2015). (PMID: 26460812460420710.1371/journal.pcbi.1004371)
Evans, A. M., Dillon, K. D. & Rand, D. G. Fast but not intuitive, slow but not reflective: Decision conflict drives reaction times in social dilemmas. J. Exp. Psychol. Gen. 144, 951–966 (2015). (PMID: 2641389110.1037/xge0000107)
Bottemanne, L. & Dreher, J.-C. Vicarious rewards modulate the drift rate of evidence accumulation from the drift diffusion model. Front. Behav. Neurosci. 13, 142 (2019). (PMID: 31312125661451310.3389/fnbeh.2019.00142)
Chen, F. & Krajbich, I. Biased sequential sampling underlies the effects of time pressure and delay in social decision making. Nat. Commun. 9, 3557 (2018). (PMID: 30177719612092310.1038/s41467-018-05994-9)
Hautzinger, M., Keller, F. & Kühner, C. Beck Depressions-Inventar- Manual. BDI II. 2nd ed. (2009).
May, T. W., Pfäfflin, M. & Cramer, J. A. Psychometric properties of the German translation of the QOLIE-31. Epilepsy Behav. 2, 106–114 (2001). (PMID: 1260919210.1006/ebeh.2001.0170)
Ostendorf, F. & Angleitner, A. NEO-PI-R. NEO-Persönlichkeitsinventar nach Costa und McCrae (Hogrefe Verlag für Psychologe, 2004).
Breyer, B. & Bluemke, M. Deutsche Version der Positive and Negative Affect Schedule PANAS (GESIS Panel), 2016.
Peuker, E. T. & Filler, T. J. The nerve supply of the human auricle. Clin. Anat. (New York, NY) 15, 35–37 (2002). (PMID: 10.1002/ca.1089)
Berthoud, H.-R. & Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85, 1–17 (2000). (PMID: 1118901510.1016/S1566-0702(00)00215-0)
Butt, M. F., Albusoda, A., Farmer, A. D. & Aziz, Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J. Anat. 236, 588–611 (2020). (PMID: 3174268110.1111/joa.13122)
Götzelmann, M. Einfluss der aurikulären Vagusnervstimulation auf affektive Parameter bei depressiven Patienten (Universität Würzburg, 2018).
van Leusden, J. W. R., Sellaro, R. & Colzato, L. S. Transcutaneous Vagal Nerve Stimulation (tVNS): A new neuromodulation tool in healthy humans?. Front. Psychol. 6, 102 (2015). (PMID: 257135474322601)
Krach, S. et al. Can machines think? Interaction and perspective taking with robots investigated via fMRI. PLoS ONE 3, e2597 (2008). (PMID: 18612463244035110.1371/journal.pone.0002597)
Borgo, M., Soranzo, A. & Grassi, M. MATLAB for Psychologists (Springer, 2012). (PMID: 10.1007/978-1-4614-2197-9)
Bradley, M. M. & Lang, P. J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59 (1994). (PMID: 796258110.1016/0005-7916(94)90063-9)
Vandekerckhove, J. & Tuerlinckx, F. Diffusion model analysis with MATLAB: A DMAT primer. Behav. Res. Methods 40, 61–72 (2008). (PMID: 1841152810.3758/BRM.40.1.61)
Pavlov, G., Shi, D. & Maydeu-Olivares, A. Chi-square difference tests for comparing nested models: An evaluation with non-normal data. Struct. Equ. Modeling 27, 908–917 (2020). (PMID: 10.1080/10705511.2020.1717957)
Ratcliff, R. & McKoon, G. The diffusion decision model: Theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008). (PMID: 18085991247474210.1162/neco.2008.12-06-420)
Krach, S., Paulus, F. M., Bodden, M. & Kircher, T. The rewarding nature of social interactions. Front. Behav. Neurosci. 4, 22 (2010). (PMID: 205775902889690)
Zinchenko, O. & Arsalidou, M. Brain responses to social norms: Meta-analyses of fMRI studies. Hum. Brain Mapp. 39, 955–970 (2018). (PMID: 2916093010.1002/hbm.23895)
Clark, K. B., Naritoku, D. K., Smith, D. C., Browning, R. A. & Jensen, R. A. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat. Neurosci. 2, 94–98 (1999). (PMID: 1019518610.1038/4600)
تواريخ الأحداث: Date Created: 20220617 Date Completed: 20220621 Latest Revision: 20221113
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC9205877
DOI: 10.1038/s41598-022-14237-3
PMID: 35715460
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-022-14237-3