دورية أكاديمية

Calcium-binding proteins typify the dopaminergic neuronal subtypes in the ventral tegmental area of zebra finch, Taeniopygia guttata.

التفاصيل البيبلوغرافية
العنوان: Calcium-binding proteins typify the dopaminergic neuronal subtypes in the ventral tegmental area of zebra finch, Taeniopygia guttata.
المؤلفون: Mitra S; School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.; Homi Bhabha National Institute (HBNI), Mumbai, India., Basu S; School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.; Homi Bhabha National Institute (HBNI), Mumbai, India., Singh O; School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.; Homi Bhabha National Institute (HBNI), Mumbai, India., Srivastava A; School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.; Homi Bhabha National Institute (HBNI), Mumbai, India., Singru PS; School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.; Homi Bhabha National Institute (HBNI), Mumbai, India.
المصدر: The Journal of comparative neurology [J Comp Neurol] 2022 Oct; Vol. 530 (14), pp. 2562-2586. Date of Electronic Publication: 2022 Jun 15.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0406041 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1096-9861 (Electronic) Linking ISSN: 00219967 NLM ISO Abbreviation: J Comp Neurol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2003-> : Hoboken, N.J. : Wiley-Liss
Original Publication: Philadelphia Wistar Institute of Anatomy and Biology
مواضيع طبية MeSH: Finches*/metabolism , Ventral Tegmental Area*/metabolism, Animals ; Calbindin 2/metabolism ; Calbindins/metabolism ; Calcium-Binding Proteins/metabolism ; Dopaminergic Neurons/metabolism ; Mammals ; Parvalbumins/metabolism ; S100 Calcium Binding Protein G/analysis ; S100 Calcium Binding Protein G/metabolism ; Secretagogins/metabolism ; Substantia Nigra ; Tyrosine 3-Monooxygenase/metabolism
مستخلص: Calcium-binding proteins (CBPs) regulate neuronal function in midbrain dopamine (DA)-ergic neurons in mammals by buffering and sensing the intracellular Ca 2+ , and vesicular release. In birds, the equivalent set of neurons are important in song learning, directed singing, courtship, and energy balance, yet the status of CBPs in these neurons is unknown. Herein, for the first time, we probe the nature of CBPs, namely, Calbindin-, Calretinin-, Parvalbumin-, and Secretagogin-expressing DA neurons in the ventral tegmental area (VTA) and substantia nigra (SN) in the midbrain of zebra finch, Taeniopygia guttata. qRT-PCR analysis of ventral midbrain tissue fragment revealed higher Calbindin- and Calretinin-mRNA levels compared to Parvalbumin and Secretagogin. Application of immunofluorescence showed CBP-immunoreactive (-i) neurons in VTA (anterior [VTAa], mid [VTAm], caudal [VTAc]), SN (compacta [SNc], and reticulata [SNr]). Compared to VTAa, higher Calbindin- and Parvalbumin-immunoreactivity (-ir), and lower Calretinin-ir were observed in VTAm and VTAc. Secretagogin-ir was highly localized to VTAa. In SN, Calbindin- and Calretinin-ir were higher in SNc, SNr was Parvalbumin enriched, and Secretagogin-ir was not detected. Weak, moderate, and intense tyrosine hydroxylase (TH)-i VTA neurons were demarcated as subtypes 1, 2, and 3, respectively. While subtype 1 TH-i neurons were neither Calbindin- nor Calretinin-i, ∼80 and ∼65% subtype 2 and ∼30 and ∼45% subtype 3 TH-i neurons co-expressed Calbindin and Calretinin, respectively. All TH-i neuronal subtypes co-expressed Parvalbumin with reciprocal relationship with TH-ir. We suggest that the CBPs may determine VTA DA neuronal heterogeneity and differentially regulate their activity in T. guttata.
(© 2022 Wiley Periodicals LLC.)
References: Abercrombie, M. (1946). Estimation of nuclear population from microtome sections. Anatomical Record, 94, 239-247.
Adinoff, B. (2004). Neurobiologic processes in drug reward and addiction. Harvard Review of Psychiatry, 12, 305-320.
Alfahel-Kakunda, A., & Silverman, W. F. (1997). Calcium-binding proteins in the substantia nigra and ventral tegmental area during development: Correlation with dopaminergic compartmentalization. Developmental Brain Research, 103, 9-20.
Alger, S. J., Juang, C., & Riters, L. V. (2011). Social affiliation relates to tyrosine hydroxylase immunolabeling in male and female zebra finches (Taeniopygia guttata). Journal of Chemical Neuroanatomy, 42, 45-55.
Alpár, A., Attems, J., Mulder, J., Hökfelt, T., & Harkany, T. (2012). The renaissance of Ca2+-binding proteins in the nervous system: Secretagogin takes center stage. Cell Signal, 24, 378-387.
Amorin, N., & Calisi, R. M. (2015). Measurements of neuronal soma size and estimated peptide concentrations in addition to cell abundance offer a higher resolution of seasonal and reproductive influences of GnRH-I and GnIH in European starlings. Integrative and Comparative Biology, 55(2), 332-342.
Anderegg, A., Poulin, J.-F., & Awatramani, R. (2015). Molecular heterogeneity of midbrain dopaminergic neurons - Moving toward single cell resolution. FEBS Letter, 589, 3714-3726.
Arai, R., Winsky, L., Arai, M., & Jacobowitz, D. M. (1991). Immunohistochemical localization of calretinin in the rat hindbrain. Journal of Comparative Neurology, 310, 21-44.
Arevalo, R., Sanchez, F., Alonso, J.-R., Rubio, M., Aijon, J., & Vazquez, R. (1993). Calretinin immunoreactivity in the magnocellular neurosecretory nuclei of the rat hypothalamus. Acta Histochemica, 95, 177-184.
Ash, A. L., Saldanha, C. J., & Bailey, D. J. (2012). Calbindin-D28K expression increases in the dorsolateral hippocampus following corticosterone treatment in female zebra finches (Taeniopygia guttata). Hippocampus, 22, 510-515.
Banerjee, S. B., Dias, B. G., Crews, D., & Adkins-Regan, E. (2013). Newly paired zebra finches have higher dopamine levels and immediate early gene Fos expression in dopaminergic neurons. European Journal of Neuroscience, 38, 3731-3739.
Barr, H. J., & Woolley, S. C. (2018). Developmental auditory exposure shapes responses of catecholaminergic neurons to socially-modulated song. Scientific Reports, 8, 11717.
Bayer, V. E., & Pickel, V. M. (1990). Ultrastructural localization of tyrosine hydroxylase in the rat ventral tegmental area: Relationship between immunolabeling density and neuronal associations. Journal of Neuroscience, 10, 2996-3013.
Beier, K. T., Steinberg, E. E., Deloach, K. E., Xie, S., Miyamichi, K., Schwarz, L., Gao, X. J., Kremer, E. J., Malenka, R. C., & Luo, L. (2015). Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell, 162, 622-634.
Beloate, L. N., Omrani, A., Adan, R. A., Webb, I. C., & Coolen, L. M. (2016). Ventral tegmental area dopamine cell activation during male rat sexual behavior regulates neuroplasticity and D-amphetamine cross-sensitization following sex abstinence. Journal of Neuroscience, 36, 9949-9961.
Bhardwaj, A., Thapliyal, S., Dahiya, Y., & Babu, K. (2018). FLP-18 functions through the G-protein-coupled receptors NPR-1 and NPR-4 to modulate reversal length in Caenorhabditis elegans. Journal of Neuroscience, 38, 4641-4654.
Birkenkamp-Demtröder, K., Wagner, L., Sørensen, F. B., Astrup, L. B., Gartner, W., Scherübl, H., Heine, B., Christiansen, P., & Ørntoft, T. F. (2005). Secretagogin is a novel marker for neuroendocrine differentiation. Neuroendocrinology, 82, 121-138.
Bottjer, S. W. (1993). The distribution of tyrosine hydroxylase immunoreactivity in the brains of male and female zebra finches. Journal of Neurobiology, 24, 51-69.
Bottjer, S. W., Halsema, K. A., Brown, S. A., & Miesner, E. A. (1989). Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches. Journal of Comparative Neurology, 279, 312-326.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Brandenburg, C., Smith, L. A., Kilander, M. B. C., Bridi, M. S., Lin, Y.-C., Huang, S., & Blatt, G. J. (2021). Parvalbumin subtypes of cerebellar Purkinje cells contribute to differential intrinsic firing properties. Molecular and Cellular Neuroscience, 115, 103650.
Brimblecombe, K. R., Vietti-Michelina, S., Platt, N. J., Kastli, R., Hnieno, A., Gracie, C. J., & Cragg, S. J. (2019). Calbindin-D28K limits dopamine release in ventral but not dorsal striatum by regulating Ca2+ availability and dopamine transporter function. ACS Chemical Neuroscience, 10, 3419-3426.
Brown, M. T. C., Henny, P., Bolam, J. P., & Magill, P. J. (2009). Activity of neurochemically heterogeneous dopaminergic neurons in the substantia nigra during spontaneous and driven changes in brain state. Journal of Neuroscience, 29, 2915-2925.
Bupesh, M., Vicario, A., Abellán, A., Desfilis, E., & Medina, L. (2014). Dynamic expression of tyrosine hydroxylase mRNA and protein in neurons of the striatum and amygdala of mice, and experimental evidence of their multiple embryonic origin. Brain Structure and Function, 219(3), 751-776.
Catoni, C., Calì, T., & Brini, M. (2019). Calcium, dopamine and neuronal calcium sensor 1: Their contribution to Parkinson's disease. Frontiers in Molecular Neuroscience, 12, 1-8.
Celio, M. R. (1990). Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience, 35, 375-475.
Charara, A., & Parent, A. (1994). Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey. Brain Research, 640, 155-170.
Charlier, T. D., Ball, G. F., & Balthazart, J. (2005). Sexual behavior activates the expression of the immediate early genes c-fos and Zenk (egr-1) in catecholaminergic neurons of male Japanese quail. Neuroscience, 131, 13-30.
Chiodo, L. A., Bannon, M. J., Grace, A. A., Roth, R. H., & Bunney, B. S. (1984). Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neuroscience, 12, 1-16.
Choksi, N. Y., Kodavanti, P. R. S., Tilson, H. A., & Booth, R. G. (1997). Effects of polychlorinated biphenyls (PCBs) on brain tyrosine hydroxylase activity and dopamine synthesis in rats. Fundamental and Applied Toxicology, 39, 76-80.
Chung, C. Y., Seo, H., Sonntag, K. C., Brooks, A., Lin, L., & Isacson, O. (2005). Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Human Molecular Genetics, 14, 1709-1725.
Clarke, P. B. S., & Pert, A. (1985). Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Research, 348, 355-358.
Craciun, I., Gutierrez-Ibanez, C., Chan, A. S. M., Luksch, H., & Wylie, D. R. (2019). Secretagogin immunoreactivity reveals Lugaro cells in the pigeon cerebellum. Cerebellum (London, England), 18, 544-555.
Damier, P., Hirsch, E. C., Agid, Y., & Graybiel, A. M. (1999). The substantia nigra of the human brain: I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain, 122, 1421-1436.
Dopeso-Reyes, I. G., Rico, A. J., Roda, E., Sierra, S., Pignataro, D., Lanz, M., Sucunza, D., Chang-Azancot, L., & Lanciego, J. L. (2014). Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Frontiers in Neuroanatomy, 8, 146.
Faas, G. C., Schwaller, B., Vergara, J. L., & Mody, I. (2007). Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin. PLoS Biology, 5, 2646-2660.
Fairless, R., Williams, S. K., & Diem, R. (2019). Calcium-binding proteins as determinants of central nervous system neuronal vulnerability to disease. International Journal of Molecular Sciences, 20, 1-14.
Fortin, M., & Parent, A. (1996). Calretinin as a marker of specific neuronal subsets in primate substantia nigra and subthalamic nucleus. Brain Research, 708, 201-204.
Fu, Y. H., Yuan, Y., Halliday, G., Rusznák, Z., Watson, C., & Paxinos, G. (2012). A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. Brain Structure and Function, 217, 591-612.
Gadagkar, V., Puzerey, P. A., Chen, R., Baird-Daniel, E., Farhang, A. R., & Goldberg, J. H. (2016). Dopamine neurons encode performance error in singing birds. Science, 354, 1278-1282.
Gale, S. D., & Perkel, D. J. (2006). Physiological properties of zebra finch ventral tegmental area and substantia nigra pars compacta neurons. Journal of Neurophysiology, 96, 2295-2306.
Gale, S. D., & Perkel, D. J. (2010). A basal ganglia pathway drives selective auditory responses in songbird dopaminergic neurons via disinhibition. Journal of Neuroscience, 30, 1027-1037.
Gardner, E. L., & Ashby, C. R. Jr. (2000). Heterogeneity of the mesotelencephalic dopamine fibers: Physiology and pharmacology. Neuroscience and Biobehavioral Reviews, 24, 115-118.
Gáti, G., Lendvai, D., Hökfelt, T., Harkany, T., & Alpár, A. (2014). Revival of calcium-binding proteins for neuromorphology: Secretagogin typifies distinct cell populations in the avian brain. Brain Behavior and Evolution, 83, 82-92.
Gerfen, C. R., Baimbridge, K. G., & Miller, J. J. (1985). The neostriatal mosaic: Compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proceedings of the National Academy of Sciences of the United States of America, 82, 8780-8784.
German, D. C., Manaye, K. F., Sonsalla, P. K., & Brooks, B. A. (1992). Midbrain dopaminergic cell loss in Parkinson's disease and MPTP-induced Parkinsonism: Sparing of calbindin-D28k-containing cells. Annals of the New York Academy of Sciences, 648, 42-62.
Goodson, J. L., Kabelik, D., Kelly, A. M., Rinaldi, J., & Klatt, J. D. (2009). Midbrain dopamine neurons reflect affiliation phenotypes in finches and are tightly coupled to courtship. Proceedings of the National Academy of Sciences of the United States of America, 106, 8737-8742.
Greene, J. G., Dingledine, R., & Greenamyre, J. T. (2005). Gene expression profiling of rat midbrain dopamine neurons: Implications for selective vulnerability in parkinsonism. Neurobiology of Disease, 18(1), 19-31.
Haber, S. N., Ryoo, H., Cox, C., & Lu, W. (1995). Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: Comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. Journal of Comparative Neurology, 362, 400-410.
Hackney, C. M., Mahendrasingam, S., Penn, A., & Fettiplace, R. (2005). The concentrations of calcium buffering proteins in mammalian cochlear hair cells. Journal of Neuroscience, 25, 7867-7875.
Halbout, B., Marshall, A. T., Azimi, A., Liljeholm, M., Mahler, S., Wassum, K., & Ostlund, S. B. (2019). Mesolimbic dopamine projections mediate cue-motivated reward seeking but not retrieval in rats. eLife, 8, e4351.
Halling, D. B., Liebeskind, B. J., Hall, A. W., & Aldrich, R. W. (2016). Conserved properties of individual Ca2+-binding sites in calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 113(9), E1216-E1225.
Heppelmann, B., Señaris, R., & Emson, P. C. (1994). Combination of alkaline phosphatase in situ hybridization with immunohistochemistry: Colocalization of calretinin-mRNA with calbindin and tyrosine hydroxylase immunoreactivity in rat substantia nigra neurons. Brain Research, 635, 293-299.
Hodge, G. K., & Butcher, L. L. (1980). Pars compacta of the substantia nigra modulates motor activity but is not involved importantly in regulating food and water intake. Naunyn-Schmiedeberg's Archives of Pharmacology, 313, 51-67.
Hoffmann, L. A., Saravanan, V., Wood, A. N., He, L., & Sober, S. J. (2016). Dopaminergic contributions to vocal learning. Journal of Neuroscience, 36, 2176-2189.
Huang, Y. C., & Hessler, N. A. (2008). Social modulation during songbird courtship potentiates midbrain dopaminergic neurons. PLoS One, 3, e3281.
Husband, S. A., & Shimizu, T. (2011). Calcium-binding protein distributions and fiber connections of the nucleus accumbens in the pigeon (Columba livia). Journal of Comparative Neurology, 519, 1371-1394.
Ikeda, M. Z., Krentzel, A. A., Oliver, T. J., Scarpa, G. B., & Remage-Healey, L. (2017). Clustered organization and region-specific identities of estrogen-producing neurons in the forebrain of Zebra Finches (Taeniopygia guttata). Journal of Comparative Neurology, 525, 3636-3652.
Isaacs, K. R., & Jacobowitz, D. M. (1994). Mapping of the colocalization of calretinin and tyrosine hydroxylase in the rat substantia nigra and ventral tegmental area. Experimental Brain Research, 99, 34-42.
Jacobowitz, D. M., & Winsky, L. (1991). Immunocytochemical localization of calretinin in the forebrain of the rat. Journal of Comparative Neurology, 304, 198-218.
Karten, H. J., Brzozowska-Prechtl, A., Lovell, P. V., Tang, D. D., Mello, C. V., Wang, H., & Mitra, P. P. (2013). Digital atlas of the zebra finch (Taeniopygia guttata) brain: A high-resolution photo atlas. Journal of Comparative Neurology, 521, 3702-3715.
Keiflin, R., Pribut, H. J., Shah, N. B., & Janak, P. H. (2019). Ventral tegmental dopamine neurons participate in reward identity predictions. Current Biology, 29, 93-103.e3.
Klejbor, I., Ludkiewicz, B., Wojcik, S., & Turlejski, K. (2013). Correlation between dopaminergic phenotype and expression of calretinin in the midbrain nuclei of the opossum (Monodelphis domestica): An immunohistological study. Acta Neurobiologiae Experimentalis (Wars), 73, 529-540.
Krzywkowski, P., Jacobowitz, D. M., & Lamour, Y. (1995). Calretinin-containing pathways in the rat forebrain. Brain Research, 705, 273-294.
Kubikova, L., & Košťál, L. (2010). Dopaminergic system in birdsong learning and maintenance. Journal of Chemical Neuroanatomy, 39, 112-123.
Kubikova, L., Wada, K., & Jarvis, E. D. (2010). Dopamine receptors in a songbird brain. Journal of Comparative Neurology, 518, 741-769.
Lammel, S., Hetzel, A., Häckel, O., Jones, I., Liss, B., & Roeper, J. (2008). Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron, 57(5), 760-773.
Lavoie, B., & Parent, A. (1991). Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. NeuroReport, 2, 601-604.
Le, W., Zhang, L., Xie, W., Li, S., & Dani, J. A. (2015). Pitx3 deficiency produces decreased dopamine signaling and induces motor deficits in Pitx3(−/−) mice. Neurobiology of Aging, 36, 3314-3320.
Lee, J. J., Yang, S. Y., Park, J., Ferrell, J. E., Shin, D. H., & Lee, K. J. (2017). Calcium ion induced structural changes promote dimerization of secretagogin, which is required for its insulin secretory function. Scientific Reports, 7, 1-11.
Li, J., Zhou, X., Huang, L., Fu, X., Liu, J., Zhang, X., Sun, Y., & Zuo, M. (2013). Alteration of CaBP expression pattern in the nucleus magnocellularis following unilateral cochlear ablation in adult zebra finches. PLoS One, 8, 1-11.
Liang, C. L., Sinton, C. M., & German, D. C. (1996). Midbrain dopaminergic neurons in the mouse: Co-localization with calbindin-D28K and calretinin. Neuroscience, 75, 523-533.
Liu, W., & Davis, R. L. (2014). Calretinin and calbindin distribution patterns specify subpopulations of type I and type II spiral ganglion neurons in postnatal murine cochlea. Journal of Comparative Neurology, 522, 2299-2318.
Liu, W. C., Gardner, T. J., & Nottebohm, F. (2004). Juvenile zebra finches can use multiple strategies to learn the same song. Proceedings of the National Academy of Sciences of the United States of America, 101, 18177-18182.
Luk, K. C., Rymar, V. V., Van Den Munckhof, P., Nicolau, S., Steriade, C., Bifsha, P., Drouin, J., & Sadikot, A. F. (2013). The transcription factor Pitx3 is expressed selectively in midbrain dopaminergic neurons susceptible to neurodegenerative stress. Journal of Neurochemistry, 125, 932-943.
Lynd-Balta, E., & Haber, S. N. (1994). The organization of midbrain projections to the striatum in the primate: Sensorimotor-related striatum versus ventral striatum. Neuroscience, 59, 625-640.
Maj, M., Milenkovic, I., Bauer, J., Berggård, T., Veit, M., Ilhan-Mutlu, A., Wagner, L., & Tretter, V. (2012). Novel insights into the distribution and functional aspects of the calcium binding protein Secretagogin from studies on rat brain and primary neuronal cell culture. Frontiers in Molecular Neuroscience, 5, 84.
Maj, M., Wagner, L., & Tretter, V. (2019). 20 Years of secretagogin: Exocytosis and beyond. Frontiers in Molecular Neuroscience, 12, 29.
Malenczyk, K., Girach, F., Szodorai, E., Storm, P., Segerstolpe, Å., Tortoriello, G., Schnell, R., Mulder, J., Romanov, R. A., Borók, E., Piscitelli, F., Di Marzo, V., Szabó, G., Sandberg, R., Kubicek, S., Lubec, G., Hökfelt, T., Wagner, L., Groop, L., & Harkany, T. (2017). A TRPV 1-to-secretagogin regulatory axis controls pancreatic β-cell survival by modulating protein turnover. EMBO Journal, 36, 2107-2125.
Mello, C. V. (2014). The zebra finch, Taeniopygia guttata: An avian model for investigating the neurobiological basis of vocal learning. Cold Spring Harbor Protocols, 2014, 1237-1242.
Menyhart, O., Kolodny, O., Goldstein, M. H., DeVoogd, T. J., & Edelman, S. (2015). Juvenile zebra finches learn the underlying structural regularities of their fathers’ song. Frontiers in Psychology, 6, 1-12.
Merrill, C. B., Friend, L. N., Newton, S. T., Hopkins, Z. H., & Edwards, J. G. (2015). Ventral tegmental area dopamine and GABA neurons: Physiological properties and expression of mRNA for endocannabinoid biosynthetic elements. Scientific Reports, 5, 1-16.
Mitra, S., Basu, S., Singh, O., Lechan, R. M., & Singru, P. S. (2021). Cocaine- and amphetamine-regulated transcript- and dopamine-containing systems interact in the ventral tegmental area of zebra finch, Taeniopygia guttata during dynamic changes in energy status. Brain Structure and Function, 226, 2537-2559.
Mongia, S., Yamaguchi, T., Liu, B., Zhang, S., Wang, H., & Morales, M. (2019). The ventral tegmental area has calbindin neurons with the capability to co-release glutamate and dopamine into the nucleus accumbens. European Journal of Neuroscience, 50, 3968-3984.
Mouatt-Prigent, A., Agid, Y., & Hirsch, E. C. (1994). Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson's disease?. Brain Research, 668, 62-70.
Mulder, J., Spence, L., Tortoriello, G., Dinieri, J. A., Uhlén, M., Shui, B., Kotlikoff, M. I., Yanagawa, Y., Aujard, F., Hökfelt, T., Hurd, Y. L., & Harkany, T. (2010). Secretagogin is a Ca2+-binding protein identifying prospective extended amygdala neurons in the developing mammalian telencephalon. European Journal of Neuroscience, 31, 2166-2177.
Nemoto, C., Hida, T., & Arai, R. (1999). Calretinin and calbindin-D28k in dopaminergic neurons of the rat midbrain: A triple-labeling immunohistochemical study. Brain Research, 846, 129-136.
Neuhoff, H., Neu, A., Liss, B., & Roeper, J. (2002). Ih channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. Journal of Neuroscience, 22, 1290-1302.
Nixdorf-Bergweiler, B. E., & Bischof, H.-J. (2007). A stereotaxic atlas of the brain of the zebra finch, Taeniopygia guttata. National Center for Biotechnology Information.
Nordeen, E. J., Holtzman, D. A., & Nordeen, K. W. (2009). Increased Fos expression among midbrain dopaminergic cell groups during birdsong tutoring. European Journal of Neuroscience, 30, 662-670.
Oertel, W. H., Tappaz, M. L., Berod, A., & Mugnaini, E. (1982). Two-color immunohistochemistry for dopamine and GABA neurons in rat substantia nigra and zona incerta. Brain Research Bulletin, 9, 463-474.
Olson, V. G., & Nestler, E. J. (2007). Topographical organization of GABAergic neurons within the ventral tegmental area of the rat. Synapse, 61, 87-95.
Pan, P. Y., & Ryan, T. A. (2012). Calbindin controls release probability in ventral tegmental area dopamine neurons. Nature Neuroscience, 15, 813-815.
Pangrsic, T., Gabrielaitis, M., Michanski, S., Schwaller, B., Wolf, F., Strenzke, N., & Moser, T. (2015). EF-hand protein Ca2+ buffers regulate Ca2+ influx and exocytosis in sensory hair cells. Proceedings of the National Academy of Sciences of the United States of America, 112, E1028-E1037.
Patel, S. N., Clayton, N. S., & Krebs, J. R. (1997). Hippocampal tissue transplants reverse lesion-induced spatial memory deficits in zebra finches (Taeniopygia guttata). Journal of Neuroscience, 17, 3861-3869.
Person, A. L., Gale, S. D., Farries, M. A., & Perkel, D. J. (2008). Organization of the songbird basal ganglia, including area X. Journal of Comparative Neurology, 508, 840-866.
Poulin, J. F., Zou, J., Drouin-Ouellet, J., Kim, K. Y. A., Cicchetti, F., & Awatramani, R. B. (2014). Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Reports, 9, 930-943.
Puelles, L., Martinez-de-la-Torre, M., Martinez, S., Watson, C., & Paxinos, G. (2018). The chick brain in stereotaxic coordinates and alternate stains: Featuring neuromeric divisions and mammalian homologies (2nd ed.). Academic Press.
Raudenska, M., Kratochvilova, M., Vicar, T., Gumulec, J., Balvan, J., Polanska, H., Pribyl, J., & Masarik, M. (2019). Cisplatin enhances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin accumulation. Scientific Reports, 9, 1-11.
Reiner, A., & Anderson, K. D. (1993). Co-occurrence of gamma-aminobutyric acid, parvalbumin and the neurotensin-related neuropeptide LANT6 in pallidal, nigral and striatal neurons in pigeons and monkeys. Brain Research, 624(1-2), 317-325.
Reiner, A., Perkel, D. J., Bruce, L. L., Butler, A. B., Csillag, A., Kuenzel, W., Medina, L., Paxinos, G., Shimizu, T., Striedter, G., Wild, M., Ball, G. F., Durand, S., Güntürkün, O., Lee, D. W., Mello, C. V., Powers, A., White, S. A., Hough, G., Kubikova, L., Smulders, T. V., Wada, K., Dugas-Ford, J., Husband, S., Yamamoto, K., Yu, J., Siang, C., & Jarvis, E. D. (2004). Revised nomenclature for avian telencephalon and some related brainstem nuclei. Journal of Comparative Neurology, 473, 377-414.
Résibois, A., & Rogers, J. H. (1992). Calretinin in rat brain: An immunohistochemical study. Neuroscience, 46, 101-134.
Rivera, P., Arrabal, S., Cifuentes, M., Grondona, J. M., Pérez-Martín, M., Rubio, L., Vargas, A., Serrano, A., Pavón, F. J., Suárez, J., & de Fonseca, F. R. (2014). Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα) and degrading (MAGL, FAAH) enzymes in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus. Frontiers in Neuroanatomy, 8, 1-16.
Roberts, T. F., Gobes, S. M. H., Murugan, M., Ölveczky, B. P., & Mooney, R. (2012). Motor circuits are required to encode a sensory model for imitative learning. Nature Neuroscience, 15, 1454-1459.
Rogers, J. H. (1987). Calretinin: A gene for a novel calcium-binding protein expressed principally in neurons. Journal of Cell Biology, 105, 1343-1353.
Rogers, J. H., & Résibois, A. (1992). Calretinin and calbindin-D28k in rat brain: Patterns of partial co-localization. Neuroscience, 51, 843-865.
Rogstam, A., Linse, S., Lindqvist, A., James, P., Wagner, L., & Berggård, T. (2007). Binding of calcium ions and SNAP-25 to the hexa EF-hand protein secretagogin. Biochemical Journal, 401, 353-363.
Romanov, R. A., Alpár, A., Zhang, M.-D., Zeisel, A., Calas, A., Landry, M., Fuszard, M., Shirran, S. L., Schnell, R., Dobolyi, Á., Oláh, M., Spence, L., Mulder, J., Martens, H., Palkovits, M., Uhlen, M., Sitte, H. H., Botting, C. H., Wagner, L., Linnarsson, S., Hökfelt, T., & Harkany, T. (2015). A secretagogin locus of the mammalian hypothalamus controls stress hormone release. The EMBO Journal, 34, 36-54.
Saha, S., Kumar, S., Singh, U., Singh, O., & Singru, P. S. (2015). Interaction between dopamine and neuropeptide Y in the telencephalon of the Indian major carp, Cirrhinus cirrhosus. General and Comparative Endocrinology, 220, 78-87.
Sakharkar, A. J., Singru, P. S., Sarkar, S., & Subhedar, N. K. (2005). Neuropeptide Y in the forebrain of the adult male cichlid fish Oreochromis mossambicus: Distribution, effects of castration and testosterone replacement. Journal of Comparative Neurology, 489(2), 148-165.
Salgado-Pineda, P., Delaveau, P., Blin, O., & Nieoullon, A. (2005). Dopaminergic contribution to the regulation of emotional perception. Clinical Neuropharmacology, 28, 228-237.
Sanagavarapu, K., Weiffert, T., Mhurchú, N. N., O'Connell, D., & Linse, S. (2016). Calcium binding and disulfide bonds regulate the stability of Secretagogin towards thermal and urea denaturation. PLoS One, 11, 1-22.
Sasaki, A., Sotnikova, T. D., Gainetdinov, R. R., & Jarvis, E. D. (2006). Social context-dependent singing-regulated dopamine. Journal of Neuroscience, 26, 9010-9014.
Schwaller, B. (2010). Ca2+ buffers. Handbook of Cell Signaling, 2/e 2, 955-962.
Schwaller, B., Meyer, M., & Schiffmann, S. (2002). “New” functions for “old” proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum Eng, 1, 241-258.
Sen, S., Parishar, P., Pundir, A. S., Reiner, A., & Iyengar, S. (2019). The expression of tyrosine hydroxylase and DARPP-32 in the house crow (Corvus splendens) brain. Journal of Comparative Neurology, 527, 1801-1836.
Shepard, P. D., & German, D. C. (1984). A subpopulation of mesocortical dopamine neurons possesses autoreceptors. European Journal of Pharmacology, 98, 455-456.
Singh, O., Kumar, S., Singh, U., Kumar, V., Lechan, R. M., & Singru, P. S. (2016). Cocaine- and amphetamine-regulated transcript peptide (CART) in the brain of zebra finch, Taeniopygia guttata: Organization, interaction with neuropeptide Y, and response to changes in energy status. Journal of Comparative Neurology, 524, 3014-3041.
So, L. Y., Munger, S. J., & Miller, J. E. (2019). Social context-dependent singing alters molecular markers of dopaminergic and glutamatergic signaling in finch basal ganglia Area X. Behavioural Brain Research, 360, 103-112.
Surmeier, D. J., Carrillo-Reid, L., & Bargas, J. (2011). Dopaminergic modulation of striatal neurons, circuits, and assemblies. Neuroscience, 198, 3-18.
Székely, A. D., & Krebs, J. R. (1996). Efferent connectivity of the hippocampal formation of the zebra finch (Taenopygia guttata): An anterograde pathway tracing study using Phaseolus vulgaris leucoagglutinin. Journal of Comparative Neurology, 368, 198-214.
Tai, V. C., Schiml, P. A., Li, X., & Rissman, E. F. (1997). Behavioral interactions have rapid effects on immunoreactivity of prohormone and gonadotropin-releasing hormone peptide. Brain Research, 772, 87-94.
Tan, Y., Williams, E. S., & Zahm, D. S. (1999). Calbindin-D 28 kD immunofluorescence in ventral mesencephalic neurons labeled following injections of Fluoro-Gold in nucleus accumbens subterritories: Inverse relationship relative to known neurotoxin vulnerabilities. Brain Research, 844(1-2), 67-77.
Taub, D. G. (2014). Evolutionarily conserved mechanisms in calcium handling may underlie intrinsic sensitivity to dopaminergic neuron death. Journal of Neuroscience, 34, 10795-10797.
Tchernichovski, O., Lints, T., Mitra, P. P., & Nottebohm, F. (1999). Vocal imitation in zebra finches is inversely related to model abundance. Proceedings of the National Academy of Sciences of the United States of America, 96, 12901-12904.
Thompson, L., Barraud, P., Andersson, E., Kirik, D., & Björklund, A. (2005). Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. Journal of Neuroscience, 25, 6467-6477.
van Domburg, P. H., & ten Donkelaar, H. J. (1991). The human substantia nigra and ventral tegmental area. A neuroanatomical study with notes on aging and aging diseases. Advances in Anatomy, Embryology and Cell Biology, 121, 1-132.
Vogt Weisenhorn, D. M., Giesert, F., & Wurst, W. (2016). Diversity matters - Heterogeneity of dopaminergic neurons in the ventral mesencephalon and its relation to Parkinson's Disease. Journal of Neurochemistry, 139, 8-26.
Wild, J. M., Williams, M. N., Howie, G. J., & Mooney, R. (2005). Calcium-binding proteins define interneurons in HVC of the zebra finch (Taeniopygia guttata). Journal of Comparative Neurology, 483, 76-90.
Xiao, L., Chattree, G., Oscos, F. G., Cao, M., Wanat, M. J., & Roberts, T. F. (2018). A basal ganglia circuit sufficient to guide birdsong learning. Neuron, 98, 208-221.e5.
Zahola, P., Hanics, J., Pintér, A., Máté, Z., Gáspárdy, A., Hevesi, Z., Echevarria, D., Adori, C., Barde, S., Törőcsik, B., Erdélyi, F., Szabó, G., Wagner, L., Kovacs, G. G., Hökfelt, T., Harkany, T., & Alpár, A. (2019). Secretagogin expression in the vertebrate brainstem with focus on the noradrenergic system and implications for Alzheimer's disease. Brain Structure and Function, 224, 2061-2078.
معلومات مُعتمدة: SR/SO/AS-83/2010 Science & Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi; CRG/2021/007466 Science & Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi; BT/PR4984/MED/30/752/2012 Department of Biotechnology (DBT), New Delhi
فهرسة مساهمة: Keywords: Calbindin; Calretinin; Dopamine; Midbrain; Parvalbumin; Secretagogin; Ventral tegmental area
المشرفين على المادة: 0 (Calbindin 2)
0 (Calbindins)
0 (Calcium-Binding Proteins)
0 (Parvalbumins)
0 (S100 Calcium Binding Protein G)
0 (Secretagogins)
EC 1.14.16.2 (Tyrosine 3-Monooxygenase)
تواريخ الأحداث: Date Created: 20220618 Date Completed: 20220729 Latest Revision: 20221019
رمز التحديث: 20231215
DOI: 10.1002/cne.25352
PMID: 35715989
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-9861
DOI:10.1002/cne.25352