دورية أكاديمية

Imaging of the Left Atrial Appendage Before Occluder Device Placement: Evaluation of Virtual Monoenergetic Images in a Single-Bolus Dual-Phase Protocol.

التفاصيل البيبلوغرافية
العنوان: Imaging of the Left Atrial Appendage Before Occluder Device Placement: Evaluation of Virtual Monoenergetic Images in a Single-Bolus Dual-Phase Protocol.
المؤلفون: Laukamp KR, Dastmalchian S, Tandon YK, Ciancibello L; From the Department of Radiology, University Hospitals Cleveland Medical Center., Pennig L; Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany., Lennartz S; Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany., Al-Kindi S; Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH., Rajagopalan S; Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH., Bera K, Hokamp NG; Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany., Gilkeson R, Gupta A
المصدر: Journal of computer assisted tomography [J Comput Assist Tomogr] 2022 Sep-Oct 01; Vol. 46 (5), pp. 735-741. Date of Electronic Publication: 2022 Jun 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 7703942 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1532-3145 (Electronic) Linking ISSN: 03638715 NLM ISO Abbreviation: J Comput Assist Tomogr Subsets: MEDLINE
أسماء مطبوعة: Publication: <2000->: Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: New York, Raven Press.
مواضيع طبية MeSH: Atrial Appendage*/diagnostic imaging , Radiography, Dual-Energy Scanned Projection*/methods, Humans ; Radiographic Image Interpretation, Computer-Assisted/methods ; Retrospective Studies ; Signal-To-Noise Ratio ; Tomography, X-Ray Computed/methods
مستخلص: Purpose: Preimplantation cardiac computed tomography (CT) for assessment of the left atrial appendage (LAA) enables correct sizing of the device and the detection of contraindications, such as thrombi. In the arterial phase, distinction between false filling defects and true thrombi can be hampered by insufficient contrast medium distribution. A delayed scan can be used to further differentiate both conditions, but contrast in these acquisitions is relatively lower. In this study, we investigated whether virtual monoenergetic images (VMI) from dual-energy spectral detector CT (SDCT) can be used to enhance contrast and visualization in the delayed phase.
Materials and Methods: Forty-nine patients receiving SDCT imaging of the LAA were retrospectively enrolled. The imaging protocol comprised dual-phase acquisitions with single-bolus contrast injection. Conventional images (CI) from both phases and 40-keV VMI from the delayed phase were reconstructed. Attenuation, signal-, and contrast-to-noise ratios (SNR/CNR) were calculated by placing regions-of-interest in the LAA, left atrium, and muscular portion of interventricular septum. Two radiologists subjectively evaluated conspicuity and homogeneity of contrast distribution within the LAA.
Results: Contrast of the LAA decreased significantly in the delayed phase but was significantly improved by VMI, showing comparable attenuation, SNR, and CNR to CI from the arterial phase (attenuation/SNR/CNR, CI arterial phase: 266.0 ± 117.0 HU/14.2 ± 7.2/6.6 ± 3.9; CI-delayed phase: 107.6 ± 35.0 HU/5.9 ± 3.0/1.0 ± 1.0; VMI delayed phase: 260.3 ± 108.6 HU/18.2 ± 10.6/4.8 ± 3.4). The subjective reading confirmed the objective findings showing improved conspicuity and homogeneity in the delayed phase.
Conclusions: The investigated single-bolus dual-phase acquisition protocol provided improved visualization of the LAA. Homogeneity of contrast media was higher in the delayed phase, while VMI maintained high contrast.
Competing Interests: R.C.G. discloses research support from Philips Medical, General Electric, and Siemens and is a consultant for Riverain Medical and Heartflow. A.G. discloses research support from GE Healthcare. The other authors declare no conflict of interest.
(Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.)
References: Han SW, Nam HS, Kim SH, et al. Frequency and significance of cardiac sources of embolism in the TOAST classification. Cerebrovasc Dis . 2007;24:463–468. doi:10.1159/000108438. (PMID: 10.1159/000108438)
Blackshear JL, Odell JA. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann Thorac Surg . 1996;61:755–759. doi:10.1016/0003-4975(95)00887-X. (PMID: 10.1016/0003-4975(95)00887-X)
Gorodnitskiy A, Lucariello RJ, Aizer A, et al. A novel approach to left atrial appendage exclusion: the WATCHMAN device. Cardiol Rev . 2010;18:230–233. doi:10.1097/CRD.0b013e3181e53abb. (PMID: 10.1097/CRD.0b013e3181e53abb)
Patel TK, Yancy CW, Knight BP. Left atrial appendage exclusion for stroke prevention in atrial fibrillation. Cardiol Res Pract . 2012;2012:610827. doi:10.1155/2012/610827. (PMID: 10.1155/2012/610827)
Leal S, Moreno R, de Sousa Almeida M, et al. Evidence-based percutaneous closure of the left atrial appendage in patients with atrial fibrillation. Curr Cardiol Rev . 2012;8:37–42. doi:10.2174/157340312801215827. (PMID: 10.2174/157340312801215827)
Kaafarani M, Saw J, Daniels M, et al. Role of CT imaging in left atrial appendage occlusion for the WATCHMAN™ device. Cardiovasc Diagn Ther . 2020;10:45–58. doi:10.21037/cdt.2019.12.01. (PMID: 10.21037/cdt.2019.12.01)
Hur J, Kim YJ, Lee HJ, et al. Cardioembolic stroke: dual-energy cardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology . 2012;263:688–695. doi:10.1148/radiol.12111691. (PMID: 10.1148/radiol.12111691)
Omran H, Jung W, Rabahieh R, et al. Imaging of thrombi and assessment of left atrial appendage function: a prospective study comparing transthoracic and transoesophageal echocardiography. Heart . 1999;81:192–198. doi:10.1136/hrt.81.2.192. (PMID: 10.1136/hrt.81.2.192)
Romero J, Husain SA, Kelesidis I, et al. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation. Circ Cardiovasc Imaging . 2013;6:185–194. doi:10.1161/CIRCIMAGING.112.000153. (PMID: 10.1161/CIRCIMAGING.112.000153)
Shapiro MD, Neilan TG, Jassal DS, et al. Multidetector computed tomography for the detection of left atrial appendage thrombus. J Comput Assist Tomogr . 2007;31:905–909. doi:10.1097/rct.0b013e31803c55e3. (PMID: 10.1097/rct.0b013e31803c55e3)
Kim YY, Klein AL, Halliburton SS, et al. Left atrial appendage filling defects identified by multidetector computed tomography in patients undergoing radiofrequency pulmonary vein antral isolation: A comparison with transesophageal echocardiography. Am Heart J . 2007;154:1199–1205. doi:10.1016/J.AHJ.2007.08.004. (PMID: 10.1016/J.AHJ.2007.08.004)
Guha A, Dunleavy MP, Hayes S, et al. Accuracy of contrast-enhanced computed tomography for thrombus detection prior to atrial fibrillation ablation and role of novel Left Atrial Appendage Enhancement Index in appendage flow assessment. Int J Cardiol . 2020;318:147–152. doi:10.1016/j.ijcard.2020.06.035. (PMID: 10.1016/j.ijcard.2020.06.035)
Li W, Yu F, Zhu W, et al. Detection of left atrial appendage thrombi by third-generation dual-source dual-energy CT: Iodine concentration versus conventional enhancement measurements. Int J Cardiol . 2019. doi:10.1016/J.IJCARD.2019.04.079. (PMID: 10.1016/J.IJCARD.2019.04.079)
Sawit ST, Garcia-Alvarez A, Suri B, et al. Usefulness of cardiac computed tomographic delayed contrast enhancement of the left atrial appendage before pulmonary vein ablation. Am J Cardiol . 2012;109:677–684. doi:10.1016/j.amjcard.2011.10.028. (PMID: 10.1016/j.amjcard.2011.10.028)
Hur J, Young, Kim J, et al. Dual-enhanced cardiac CT for detection of left atrial appendage thrombus in patients with stroke a prospective comparison study with transesophageal echocardiography. 2011. doi:10.1161/STROKEAHA.110.611293.
Hur J, Pak HN, Kim YJ, et al. Dual-enhancement cardiac computed tomography for assessing left atrial thrombus and pulmonary veins before radiofrequency catheter ablation for atrial fibrillation. Am J Cardiol . 2013;112:238–244. doi:10.1016/j.amjcard.2013.03.018. (PMID: 10.1016/j.amjcard.2013.03.018)
Suh YJ, Yoon SH, Hong H, et al. Acute adverse reactions to nonionic iodinated contrast media: a meta-analysis. Invest Radiol . 2019;54:589–599. doi:10.1097/RLI.0000000000000568. (PMID: 10.1097/RLI.0000000000000568)
Toprak O. Conflicting and new risk factors for contrast induced nephropathy. J Urol . 2007;178:2277–2283. doi:10.1016/j.juro.2007.08.054. (PMID: 10.1016/j.juro.2007.08.054)
Solomon R, DuMouchel W. Contrast media and nephropathy: findings from systematic analysis and food and drug administration reports of adverse effects. Invest Radiol . 2006;41:651–660. doi:10.1097/01.rli.0000229742.54589.7b. (PMID: 10.1097/01.rli.0000229742.54589.7b)
Tepel M, Aspelin P, Lameire N. Contrast-induced nephropathy: a clinical and evidence-based approach. Circulation . 2006;113:1799–1806. doi:10.1161/CIRCULATIONAHA.105.595090. (PMID: 10.1161/CIRCULATIONAHA.105.595090)
Davenport MS, Cohan RH, Ellis JH. Contrast media controversies in 2015: imaging patients with renal impairment or risk of contrast reaction. Am J Roentgenol . 2015;204:1174–1181. doi:10.2214/AJR.14.14259. (PMID: 10.2214/AJR.14.14259)
Routhier J, Piazzo K, Sodickson A. Contrast and cost savings by implementation of a multidose Bulk IV contrast delivery system. J Am Coll Radiol . 2011;8:265–270. doi:10.1016/j.jacr.2010.08.031. (PMID: 10.1016/j.jacr.2010.08.031)
Arana E, Martí-Bonmatí L, Tobarra E, et al. Cost reduction in abdominal CT by weight-adjusted dose. Eur J Radiol . 2009;70:507–511. doi:10.1016/j.ejrad.2008.01.048. (PMID: 10.1016/j.ejrad.2008.01.048)
Pontone G, Andreini D, Bartorelli AL, et al. Feasibility and accuracy of a comprehensive multidetector computed tomography acquisition for patients referred for balloon-expandable transcatheter aortic valve implantation. Am Heart J . 2011;161:1106–1113. doi:10.1016/j.ahj.2011.03.003. (PMID: 10.1016/j.ahj.2011.03.003)
Lennartz S, Große Hokamp N, Zäske C, et al. Virtual monoenergetic images preserve diagnostic assessability in contrast media reduced abdominal spectral detector CT. Br J Radiol . 2020;93:20200340. doi:10.1259/bjr.20200340. (PMID: 10.1259/bjr.20200340)
McCollough CH, Leng S, Yu L, et al. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology . 2015;276:637–653. doi:10.1148/radiol.2015142631. (PMID: 10.1148/radiol.2015142631)
Hickethier T, Byrtus J, Hauger M, et al. Utilization of virtual mono-energetic images (MonoE) derived from a dual-layer spectral detector CT (SDCT) for the assessment of abdominal arteries in venous contrast phase scans. Eur J Radiol . 2018;99:28–33. doi:10.1016/J.EJRAD.2017.12.007. (PMID: 10.1016/J.EJRAD.2017.12.007)
Glikson M, Wolff R, Hindricks G, et al. EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion—an update. Europace . 2019;22:184. doi:10.1093/EUROPACE/EUZ258. (PMID: 10.1093/EUROPACE/EUZ258)
Spencer RJ, Dejong P, Fahmy P, et al. Changes in left atrial appendage dimensions following volume loading during percutaneous left atrial appendage closure. JACC Cardiovasc Interv . 2015;8:1935–1941. doi:10.1016/j.jcin.2015.07.035. (PMID: 10.1016/j.jcin.2015.07.035)
Hur J, Young JK, Lee HJ, et al. Left atrial appendage thrombi in stroke patients: detection with two-phase cardiac CT angiography versus transesophageal echocardiography. Radiology . 2009;251:683–690. doi:10.1148/radiol.2513090794. (PMID: 10.1148/radiol.2513090794)
Neuhaus V, Große Hokamp N, Abdullayev N, et al. Comparison of virtual monoenergetic and polyenergetic images reconstructed from dual-layer detector CT angiography of the head and neck. Eur Radiol . 2018;28:1102–1110. doi:10.1007/s00330-017-5081-8. (PMID: 10.1007/s00330-017-5081-8)
Große Hokamp N, Höink AJ, Doerner J, et al. Assessment of arterially hyper-enhancing liver lesions using virtual monoenergetic images from spectral detector CT: phantom and patient experience. Abdom Radiol . 2017;43:2066–2074. doi:10.1007/s00261-017-1411-1. (PMID: 10.1007/s00261-017-1411-1)
Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas . 1960;20:37–46. doi:10.1177/001316446002000104. (PMID: 10.1177/001316446002000104)
Fleiss JL, Cohen J. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ Psychol Meas . 1973;33:613–619. doi:10.1177/001316447303300309. (PMID: 10.1177/001316447303300309)
AlJaroudi WA, Saliba WS, Wazni OM, et al. Role of cardiac computed tomography and cardiovascular magnetic resonance imaging in guiding management and treatment of patients with atrial fibrillation: State of the art review. J Nucl Cardiol . 2013;20:426–442. doi:10.1007/s12350-013-9689-z. (PMID: 10.1007/s12350-013-9689-z)
Feuchtner GM, Dichtl W, Bonatti JO, et al. Diagnostic accuracy of cardiac 64-slice computed tomography in detecting atrial thrombi: comparative study with transesophageal echocardiography and cardiac surgery. Invest Radiol . 2008;43:794–801. doi:10.1097/RLI.0b013e318184cd6c. (PMID: 10.1097/RLI.0b013e318184cd6c)
Bilchick KC, Mealor A, Gonzalez J, et al. Effectiveness of integrating delayed computed tomography angiography imaging for left atrial appendage thrombus exclusion into the care of patients undergoing ablation of atrial fibrillation. Heart Rhythm . 2016;13:12–19. doi:10.1016/j.hrthm.2015.09.002. (PMID: 10.1016/j.hrthm.2015.09.002)
Cavallo AU, Patterson AJ, Thomas R, et al. Low dose contrast CT for transcatheter aortic valve replacement assessment: results from the prospective SPECTACULAR study (spectral CT assessment prior to TAVR). J Cardiovasc Comput Tomogr . 2020;14:68–74. doi:10.1016/j.jcct.2019.06.015. (PMID: 10.1016/j.jcct.2019.06.015)
Lennartz S, Laukamp KR, Tandon Y, et al. Abdominal vessel depiction on virtual triphasic spectral detector CT: initial clinical experience. Abdom Radiol (New York) . 2021;46:3501–3511. doi:10.1007/S00261-021-03001-2. (PMID: 10.1007/S00261-021-03001-2)
Lennartz S, Laukamp KR, Neuhaus V, et al. Dual-layer detector CT of the head: initial experience in visualization of intracranial hemorrhage and hypodense brain lesions using virtual monoenergetic images. Eur J Radiol . 2018;108:177–183. doi:10.1016/j.ejrad.2018.09.010. (PMID: 10.1016/j.ejrad.2018.09.010)
Große Hokamp N, Obmann VC, Kessner R, et al. Improved visualization of hypodense liver lesions in virtual monoenergetic images from spectral detector CT: proof of concept in a 3D-printed phantom and evaluation in 74 patients. Eur J Radiol . 2018;109:114–123. doi:10.1016/j.ejrad.2018.11.001. (PMID: 10.1016/j.ejrad.2018.11.001)
Laukamp KR, Zopfs D, Lennartz S, et al. Metal artifacts in patients with large dental implants and bridges: combination of metal artifact reduction algorithms and virtual monoenergetic images provides an approach to handle even strongest artifacts. Eur Radiol . 2019;29:4228–4238. doi:10.1007/s00330-018-5928-7. (PMID: 10.1007/s00330-018-5928-7)
Laukamp KR, Tirumani SH, Lennartz S, et al. Evaluation of equivocal small cystic pancreatic lesions with spectral-detector computed tomography. Acta Radiol . 2020. doi:10.1177/0284185120917119. (PMID: 10.1177/0284185120917119)
Laukamp KR, Kessner R, Halliburton S, et al. Virtual noncontrast images from portal venous phase spectral-detector CT acquisitions for adrenal lesion characterization. J Comput Assist Tomogr . 2021;45:24–28. doi:10.1097/RCT.0000000000000982. (PMID: 10.1097/RCT.0000000000000982)
Lennartz S, Le Blanc M, Zopfs D, et al. Dual-energy CT-derived iodine maps: use in assessing pleural carcinomatosis. Radiology . 2019;290:796–804. doi:10.1148/radiol.2018181567. (PMID: 10.1148/radiol.2018181567)
Laukamp KR, Ho V, Obmann VC, et al. Virtual non-contrast for evaluation of liver parenchyma and vessels: results from 25 patients using multi-phase spectral-detector CT. Acta Radiol . 2020;61:1143–1152. doi:10.1177/0284185119893094. (PMID: 10.1177/0284185119893094)
تواريخ الأحداث: Date Created: 20220620 Date Completed: 20220916 Latest Revision: 20220916
رمز التحديث: 20231215
DOI: 10.1097/RCT.0000000000001330
PMID: 35723620
قاعدة البيانات: MEDLINE
الوصف
تدمد:1532-3145
DOI:10.1097/RCT.0000000000001330